分析 由条件利用正弦函数、余弦函数的周期性以及它们的图象的对称性,求得φ的值.
解答 解:∵函数f(x)=2sin(ωx+$\frac{π}{6}}$)(ω>0)与函数g(x)=cos(2x+φ)(|φ|<$\frac{π}{2}}$)的对称轴完全相同,
∴它们的周期相同,即$\frac{2π}{ω}$=$\frac{2π}{2}$,∴ω=2.
令2x+$\frac{π}{6}}$=kπ+$\frac{π}{2}$,可得x=$\frac{kπ}{2}$+$\frac{π}{6}$,k∈Z,即f(x)=2sin(ωx+$\frac{π}{6}}$)的图象的对称轴为x=$\frac{kπ}{2}$+$\frac{π}{6}$,k∈Z.
故函数g(x)=cos(2x+φ)(|φ|<$\frac{π}{2}}$)的图象的对称轴为x=$\frac{kπ}{2}$+$\frac{π}{6}$,k∈Z,即 2•($\frac{kπ}{2}$+$\frac{π}{6}$ )+φ=nπ,
即kπ+$\frac{π}{3}$+φ=nπ,n∈Z,故φ=-$\frac{π}{3}$,
故答案为:-$\frac{π}{3}$.
点评 本题主要考查正弦函数、余弦函数的周期性以及它们的图象的对称性,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 命题“若x=1,则x2=1”的否定为:“若x=1,则x2≠1” | |
| B. | 已知y=f(x)是上的可导函数,则“f′(x0)=0”是“x0是函数y=f(x)的极值点”的充分必要条件 | |
| C. | 命题“存在x∈R,使得x2+x+1<0”的否定是:“对任意x∈R,均有x2+x+1<0” | |
| D. | 命题“角α的终边在第一象限,则α是锐角”的逆否命题为真命题 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|x≠±2} | B. | (-2,2) | C. | (-∞,-2)∪(2,+∞) | D. | (-∞,-2)∪(0,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x+4 | B. | x-2 | C. | x+3 | D. | -x+2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{6}$ | D. | $\frac{5}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com