分析 (1)由$\sqrt{2}$a=2csinA,由正弦定理可得:$\sqrt{2}$sinA=2sinCsinA,sinA≠0,可得sinC=$\frac{\sqrt{2}}{2}$,根据△ABC是锐角三角形,可得C.
(2)由余弦定理可得:c2=a2+b2-2abcosC,可得a2+b2-$\sqrt{2}$ab=9,又$\frac{3\sqrt{2}}{2}$=$\frac{1}{2}$absin$\frac{π}{4}$,解得ab即可得出.
解答 解:(1)∵$\sqrt{2}$a=2csinA,由正弦定理可得:$\sqrt{2}$sinA=2sinCsinA,sinA≠0,可得sinC=$\frac{\sqrt{2}}{2}$,
∵△ABC是锐角三角形,∴C=$\frac{π}{4}$.
(2)由余弦定理可得:c2=a2+b2-2abcosC,∴a2+b2-$\sqrt{2}$ab=9,
又$\frac{3\sqrt{2}}{2}$=$\frac{1}{2}$absin$\frac{π}{4}$,解得ab=6.
∴a2+b2=6$\sqrt{2}$+9.
点评 本题考查了正弦定理余弦定理、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
| 感染 | 未感染 | 总计 | |
| 没服用 | 20 | 30 | 50 |
| 服用 | X | y | 50 |
| 总计 | M | N | 100 |
| P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 |
| k0 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-1-$\frac{\sqrt{2}}{2}$) | B. | [-1+$\frac{\sqrt{2}}{2}$,1-$\frac{\sqrt{2}}{2}$] | ||
| C. | [1+$\frac{\sqrt{2}}{2}$,+∞) | D. | [-1-$\frac{\sqrt{2}}{2}$,-1+$\frac{\sqrt{2}}{2}$]∪[1-$\frac{\sqrt{2}}{2}$,1+$\frac{\sqrt{2}}{2}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=sin(2x+$\frac{π}{3}}$) | B. | y=sin(2x-$\frac{π}{6}}$) | C. | y=cos(4x-$\frac{π}{3}}$) | D. | y=cos(2x+$\frac{π}{3}}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 命题“若x=1,则x2=1”的否定为:“若x=1,则x2≠1” | |
| B. | 已知y=f(x)是上的可导函数,则“f′(x0)=0”是“x0是函数y=f(x)的极值点”的充分必要条件 | |
| C. | 命题“存在x∈R,使得x2+x+1<0”的否定是:“对任意x∈R,均有x2+x+1<0” | |
| D. | 命题“角α的终边在第一象限,则α是锐角”的逆否命题为真命题 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x+4 | B. | x-2 | C. | x+3 | D. | -x+2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com