精英家教网 > 高中数学 > 题目详情
精英家教网如图所示,直三棱柱ABC-A1B1C1中,CA=CB=2,∠BCA=90°,棱AA1=4,E、M、N分别是CC1、A1B1、AA1的中点.
(1)求证:A1B⊥C1M;
(2)求BN的长;
(3)求二面角B1-A1E-C1平面角的余弦值.
分析:(1)以C为坐标原点,建立如图所示的空间坐标系,我们易求出A1B与C1M的方向向量,然后根据他们的数量积为0,易判断A1B⊥C1M;
(2)根据N为AA1的中点CA=CB=2,棱AA1=4,求出B,N两点的坐标,代入空间两点间的距离公式,即可求出BN的长;
(3)分别求出平面B1A1E与平面A1EC1的法向量,我们代入向量的夹角公式即可求出二面角B1-A1E-C1平面角的余弦值.
解答:精英家教网证明:(1)如图建立空间直角坐标系
A1(2,0,4),B(0,2,0),C1(0,0,4),M(1,1,4),
A1B
=(-2,2,-4),
C1M
=(1,1,0)

A1B
C1M
=-2+2=0
∴A1B⊥C1M(4分)
(2)依题意得:B(0,2,0),N(2,0,2)
|BN|=
(2-0)2+(0-2)2+(2-0)2
=2
3
.(6分)
(3)依题意得:A1(2,0,4),B(0,2,0),C(0,0,0),B1(0,2,4)E(0,0,2),C1(0,0,4)
EB1
=(0,2,2),
EA1
=(2,0,2)

∵BC⊥AC,BC⊥CC1
∴平面C1EA1的法向量为
CB
=(0,2,0)
,得|
CB
|=2

设平面B1EA1的法向量为
n
=(x,y,z)

则:
EB1
n
=0得:2y+2z=0∴y=-z
EA1
n
=0得:2+2z=0∴x=-z

z=1,则
n
=(-1,-1,1)
,得|
n
|=
3

cos<
CB
n
>=
CB
n
|
CB
|•|
n
|
=
-2
2
3
=-
3
3

由题意可知:二面角B1-A1E-C1的大小是锐角
所以二面角B1-A1E-C1的平面角的余弦值是
3
3
..(13分)
点评:本题考查的知识点是二面角的平面角及求法,直线与平面垂直的性质,其中建立空间坐标系,将线线垂直,二面角问题转化为向量夹角问题是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示,直三棱柱ABC-A1B1C1的各条棱长均为a,D是侧棱CC1的中点.
(1)求证:平面AB1D⊥平面ABB1A1
(2)求异面直线AB1与BC所成角的余弦值;
(3)求平面AB1D与平面ABC所成二面角(锐角)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,直三棱柱ABC-A1B1C1中,AB⊥AC,D,E分别为AA1,B1C的中点,若记
AB
=
a
AC
=
b
AA
=
c
,则
DE
=
1
2
a
+
1
2
b
1
2
a
+
1
2
b
(用
a
b
c
表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,直三棱柱ABC-A'B'C'中,∠BCA=90°,CA=CB=1,AA'=2,M,N分别是A'B'、A'A的中点.
(1)求证:A'B⊥C'M;
(2)求异面直线BA'与CB'所成交的大小;
(3)(理)求BN与平面CNB'所称的角的大小;
(4)(理)求二面角A-BN-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,直三棱柱ABCA1B1C1中,底面是等腰直角三角形,∠ACB=90°,AC=1,AA1=,点DAB的中点.

(1)求证:CD⊥平面ABB1A1

(2)求二面角A-A1B-C的平面角的正切值;

(3)求三棱锥B1A1BC的体积;

(4)求BC1与平面A1BC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在直三棱柱ABCA1B1C1中,∠ABC=90°,D为棱AC的中点,且AB=BC=BB1=a.

(1)求证:AB1∥平面BC1D;

(2)求异面直线AB1BC1所成的角;

(3)求点A到平面BC1D的距离.

查看答案和解析>>

同步练习册答案