【题目】如图所示,正三棱柱的高为2,是的中点,是的中点
(1)证明:平面;
(2)若三棱锥的体积为,求该正三棱柱的底面边长.
【答案】(1)见解析(2)2
【解析】
试题分析:(1)由三角形中位线性质得DE//AC1,再根据线面平行判定定理得结果(2)根据平行性质得D到平面BCC1B1的距离是A到平面BCC1B1的距离的一半,再根据锥体体积公式列方程解得底面边长
试题解析:(Ⅰ)证明:如图,连接AB1,AC1,
易知D是AB1的中点,
又E是B1C1的中点,
所以在中,DE//AC1,
又DE平面ACC1A1,AC1平面ACC1A1,
所以DE//平面ACC1A1.
(Ⅱ)解:,
D是AB1的中点,
D到平面BCC1B1的距离是A到平面BCC1B1的距离的一半,
如图,作AFBC交BC于F,由正三棱柱的性质,易证AF平面BCC1B1,
设底面正三角形边长为,则三棱锥DEBC的高h=AF=,
,所以,
解得.
所以该正三棱柱的底面边长为2.
科目:高中数学 来源: 题型:
【题目】石嘴山三中最强大脑社对高中学生的记忆力x和判断力y进行统计分析,得下表数据
x | 6 | 8 | 10 | 12 |
y | 2 | 3 | 5 | 6 |
(1)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程 ,预测记忆力为9的同学的判断力.
(2)若记忆力增加5个单位,预测判断力增加多少个单位?
参考公式:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆心在轴上的圆与直线切于点.圆: .
(1)求圆的标准方程;
(2)已知,圆与轴相交于两点(点在点的右侧).过点任作一条倾斜角不为0的直线与圆相交于两点.问:是否存在实数,使得?若存在,求出实数的值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】遂宁市观音湖港口船舶停靠的方案是先到先停.
(1)若甲乙两艘船同时到达港口,双方约定各派一名代表从1,2,3,4,5中各随机选一个数(甲、乙选取的数互不影响),若两数之和为偶数,则甲先停靠;若两数之和为奇数,则乙先停靠,这种规则是否公平?请说明理由.
(2)根据以往经验,甲船将于早上7:00~8:00到达,乙船将于早上7:30~8:30到达,请求出甲船先停靠的概率
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如果执行右边的程序框图,输入正整数N(N≥2)和实数a1 , a2 , …,an , 输出A,B,则( )
A.A+B为a1 , a2 , …,an的和
B. 为a1 , a2 , …,an的算术平均数
C.A和B分别是a1 , a2 , …,an中最大的数和最小的数
D.A和B分别是a1 , a2 , …,an中最小的数和最大的数
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直三棱柱ABC﹣A1B1C1中,AC=BC= AA1 , D是棱AA1的中点,DC1⊥BD
(1)证明:DC1⊥BC;
(2)求二面角A1﹣BD﹣C1的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)在[a,b]上有定义,若对任意x1 , x2∈[a,b],有 则称f(x)在[a,b]上具有性质P.设f(x)在[1,3]上具有性质P,现给出如下命题:
①f(x)在[1,3]上的图象是连续不断的;
②f(x2)在[1, ]上具有性质P;
③若f(x)在x=2处取得最大值1,则f(x)=1,x∈[1,3];
④对任意x1 , x2 , x3 , x4∈[1,3],有 [f(x1)+f(x2)+f(x3)+f(x4)]
其中真命题的序号是( )
A.①②
B.①③
C.②④
D.③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设一组数据的平均数是2.8,方差是3.6,若将这组数据中的每一个数据都加上10,得到一组新数据,则所得新数据的平均数和方差分别是( )
A.12.8 3.6 B.2.8 13.6 C.12.8 13.6 D.13.6 12.8
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com