【题目】如图,直三棱柱ABC﹣A1B1C1中,AC=BC= AA1 , D是棱AA1的中点,DC1⊥BD
(1)证明:DC1⊥BC;
(2)求二面角A1﹣BD﹣C1的大小.
【答案】
(1)证明:在Rt△DAC中,AD=AC,∴∠ADC=45°
同理:∠A1DC1=45°,∴∠CDC1=90°
∴DC1⊥DC,DC1⊥BD
∵DC∩BD=D
∴DC1⊥面BCD
∵BC面BCD
∴DC1⊥BC
(2)解:∵DC1⊥BC,CC1⊥BC,DC1∩CC1=C1,∴BC⊥面ACC1A1,
∵AC面ACC1A1,∴BC⊥AC
取A1B1的中点O,过点O作OH⊥BD于点H,连接C1O,OH
∵A1C1=B1C1,∴C1O⊥A1B1,
∵面A1B1C1⊥面A1BD,面A1B1C1∩面A1BD=A1B1,
∴C1O⊥面A1BD
而BD面A1BD
∴BD⊥C1O,
∵OH⊥BD,C1O∩OH=O,
∴BD⊥面C1OH∴C1H⊥BD,∴点H与点D重合且∠C1DO是二面角A1﹣BD﹣C1的平面角
设AC=a,则 , ,
∴sin∠C1DO=
∴∠C1DO=30°
即二面角A1﹣BD﹣C1的大小为30°
【解析】(1)证明DC1⊥BC,只需证明DC1⊥面BCD,即证明DC1⊥DC,DC1⊥BD;(2)证明BC⊥面ACC1A1 , 可得BC⊥AC取A1B1的中点O,过点O作OH⊥BD于点H,连接C1O,C1H,可得点H与点D重合且∠C1DO是二面角A1﹣BD﹣C1的平面角,由此可求二面角A1﹣BD﹣C1的大小.
【考点精析】掌握空间中直线与直线之间的位置关系是解答本题的根本,需要知道相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点.
科目:高中数学 来源: 题型:
【题目】如图,已知圆O的内接四边形BCED,BC为圆O的直径,BC=2,延长CB,ED交于A点,使得∠DOB=∠ECA,过A作圆O的切线,切点为P,
(1)求证:BD=DE;
(2)若∠ECA=45°,求AP2的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}(n=1,2,3,…)满足an+1=2an , 且a1 , a2+1,a3成等差数列,设bn=3log2an﹣7.
(1)求数列{an},{bn}的通项公式;
(2)求数列{|bn|}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】△ABC的内角A,B,C所对应的边分别为a,b,c.
(Ⅰ)若a,b,c成等差数列,证明:sinA+sinC=2sin(A+C);
(Ⅱ)若a,b,c成等比数列,求cosB的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知关于x的一次函数.
(Ⅰ)设集合和,分别从集合和中随机取一个数作为m和n,求函数是增函数的概率;
(Ⅱ)实数m,n满足条件求函数的图象经过一、二、三象限的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆E: 的左焦点为F1 , 右焦点为F2 , 离心率e= .过F1的直线交椭圆于A、B两点,且△ABF2的周长为8.
(Ⅰ)求椭圆E的方程.
(Ⅱ)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4相交于点Q.试探究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,长方体ABCD﹣A1B1C1D1中,AA1=AB=1,AD=2,E为BC的中点,点M,N分别为棱DD1 , A1D1的中点.
(1)求证:平面CMN∥平面A1DE;
(2)求证:平面A1DE⊥平面A1AE.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com