精英家教网 > 高中数学 > 题目详情
17.下列导数运算正确的是(  )
A.(x+$\frac{1}{x}$)′=1+$\frac{1}{{x}^{2}}$B.(xlnx)′=lnx+1C.(cosx)′=sinxD.(2x)′=x2x-1

分析 根据函数的导数的公式分别进行判断即可.

解答 解:A.(x+$\frac{1}{x}$)′=1-$\frac{1}{{x}^{2}}$,故A错误,
B.(xlnx)′=lnx+x•$\frac{1}{x}$=lnx+1,故B正确,
C.(cosx)′=-sinx,故C错误,
D.(2x)′=2xln2,故D正确,
故选:B

点评 本题主要考查导数的计算,根据函数的导数公式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=|x|(x-a),a为实数.
(1)若函数f(x)为奇函数,求实数a的值;
(2)若函数f(x)在[0,2]为增函数,求实数a的取值范围;
(3)是否存在实数a(a<0),使得f(x)在闭区间$[{-1,\frac{1}{2}}]$上的最大值为2,若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知各顶点都在同一个球面上的正三棱柱的高为4,体积为12$\sqrt{3}$,则这个球的表面积为32π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.一台机器由于使用时间较长,但还可以使用,它按不同的转速生产出来的某机器零件有一些会有缺点,每小时生产有缺点零件的多少随机器运转的速度而变化,如表是抽样试验结果:
转速x/(rad/s)1614128
每小时生产有缺点的零件数y/件11985
若实际生产中,允许每小时的产品中有缺点的零件数最多为10个,那么机器的转速应该控制所在的范围是(  )
A.10转/s以下B.15转/s以下C.20转/s以下D.25转/s以下

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)是定义在R上的奇函数,当x<0时,f(x)=x2-x-1,则函数f(x)的解析式为f(x)=$\left\{\begin{array}{l}{{x}^{2}-x-1,x<0}\\{0,x=0}\\{-{x}^{2}-x+1,x>0}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知命题p:“x∈R时,都有x2-x+$\frac{1}{4}$<0”;命题q:“存在x∈R,使sinx+cosx=$\sqrt{2}$成立”.则下列判断正确的是(  )
A.p∨q为假命题B.p∧q为真命题C.¬p∧q为真命题D.¬p∨¬q是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合M={x|-2≤x≤2},N={x|y=$\sqrt{1-x}$},那么M∩N=(  )
A.[-2,1]B.(-2,1)C.(-2,1]D.{-2,1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(理科做)如图,在直三棱柱ABC-A1B1C1中,AC⊥BC,点D是AB的中点.
求证:
(1)AC⊥BC1
(2)AC1∥平面B1CD.
(3)若AC=BC=$\frac{1}{2}$CC1,求直线CC1与平面ABC1所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设A={x∈Z|x≤6},B={x∈Z|x>1},那么A∩B等于(  )
A.{x|1<x≤6}B.{1,2,3,4,5,6}C.{2,3,4,5,6}D.{2,3,4,5}

查看答案和解析>>

同步练习册答案