精英家教网 > 高中数学 > 题目详情
8.已知各顶点都在同一个球面上的正三棱柱的高为4,体积为12$\sqrt{3}$,则这个球的表面积为32π.

分析 先求出正三棱柱底面等边三角形边长为$2\sqrt{3}$,则底面等边三角形高为3,可得R,即可求出球的表面积.

解答 解:由各顶点都在同一个球面上的正三棱柱的高为4,体积为12$\sqrt{3}$,
正三棱柱底面等边三角形边长为$2\sqrt{3}$,则底面等边三角形高为3,
所以R=$\sqrt{(\frac{2}{3}×3)^{2}+4}$=2$\sqrt{2}$,故S=4π•8=32π.
故答案为32π.

点评 本题考查球的表面积,考查三棱柱体积的计算,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知抛物线y2=8x的焦点为F,准线为l,点P为抛物线上一点,且在第一象限,PA⊥l,垂足为A,|PF|=4,则直线AF倾斜角为135°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知a,b,a+b成等差数列,a,b,ab成等比数列,且$0<10{log_m}^{({ab})}<1$,则m的取值范围是(  )
A.m>1B.1<m<8C.m>8D.0<m<1或 m>8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知定义在R上的奇函数f(x)满足f(x)=f(x+2),当x∈(0,1]时,f(x)=$\sqrt{x},则f(\frac{7}{2})$等于(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$-\frac{1}{2}$D.$-\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知实数x,y,z为正数,则$\frac{xy+yz}{{{x^2}+{y^2}+{z^2}}}$的最大值为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设x,y满足不等式$\left\{\begin{array}{l}y≤2\\ x+y≥1\\ x-y≤1\end{array}\right.$,若M=4x+y,N=($\frac{1}{2}$)x,则M-N的最小值为-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=sin(x+θ)cosx(|θ|≤$\frac{π}{2}$)的最大值为$\frac{3}{4}$.
(1)求f($\frac{5π}{12}$)的值;
(2)解不等式f(x)≥$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列导数运算正确的是(  )
A.(x+$\frac{1}{x}$)′=1+$\frac{1}{{x}^{2}}$B.(xlnx)′=lnx+1C.(cosx)′=sinxD.(2x)′=x2x-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知非零向量$\overrightarrow a$,$\overrightarrow b$满足$\overrightarrow a$⊥$\overrightarrow b$,|$\overrightarrow a$+$\overrightarrow b$|=3|$\overrightarrow b$|,则cos<$\overrightarrow a$,$\overrightarrow b$-$\overrightarrow a$>=(  )
A.$-\frac{1}{3}$B.$\frac{1}{3}$C.$-\frac{{2\sqrt{2}}}{3}$D.$\frac{{2\sqrt{2}}}{3}$

查看答案和解析>>

同步练习册答案