精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=|x﹣ |+|x+ |,M为不等式f(x)<2的解集. (Ⅰ)求M;
(Ⅱ)证明:当a,b∈M时,|a+b|<|1+ab|.

【答案】解:(I)当x<﹣ 时,不等式f(x)<2可化为: ﹣x﹣x﹣ <2, 解得:x>﹣1,
∴﹣1<x<﹣
当﹣ ≤x≤ 时,不等式f(x)<2可化为: ﹣x+x+ =1<2,
此时不等式恒成立,
∴﹣ ≤x≤
当x> 时,不等式f(x)<2可化为:﹣ +x+x+ <2,
解得:x<1,
<x<1,
综上可得:M=(﹣1,1);
证明:(Ⅱ)当a,b∈M时,
(a2﹣1)(b2﹣1)>0,
即a2b2+1>a2+b2
即a2b2+1+2ab>a2+b2+2ab,
即(ab+1)2>(a+b)2
即|a+b|<|1+ab|
【解析】(I)分当x<﹣ 时,当﹣ ≤x≤ 时,当x> 时三种情况,分别求解不等式,综合可得答案;(Ⅱ)当a,b∈M时,(a2﹣1)(b2﹣1)>0,即a2b2+1>a2+b2 , 配方后,可证得结论.
【考点精析】通过灵活运用绝对值不等式的解法,掌握含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求证:方程有实根;

(2)上是单调递减函数,求实数的取值范围;

(3)当时,关于的不等式的解集为空集,求所有满足条件的实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分13分)为了解某校今年高一年级女生的身体素质状况,从该校高一年级女生中抽取了一部分学生进行“掷铅球”的项目测试,成绩低于5米为不合格,成绩在5至7米(含5米不含7米)的为及格,成绩在7米11米(含7米11米,假定该校高一女生掷铅球均不超过11米)为优秀把获得的所有数据,分成五组,画出频率分布直方图如图所示已知有4名学生的成绩在9米11米之间

(1)求实数的值及参加“掷球”项目测试的人数;

(2)若从此次测试成绩最好和最差的两组中随机抽取2名学生再进行其它项目的测试,求所抽取的2名学生自不同组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数上是减函数,在上是增函数若函数,利用上述性质,

时,求的单调递增区间只需判定单调区间,不需要证明

在区间上最大值为,求的解析式;

若方程恰有四解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数关于函数的性质,有以下四个推断:

的定义域是 的值域是

是奇函数; 是区间上的增函数.

其中推断正确的题号是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为加快新能源汽车产业发展,推进节能减排,国家对消费者购买新能源汽车给予补贴,其中对纯电动乘用车补贴标准如下表:

新能源汽车补贴标准

车辆类型

续驶里程R(公里)

80≤R<150

150≤R<250

R≥250

纯电动乘用车

3.5万元/辆

5万元/辆

6万元/辆

某校研究性学习小组,从汽车市场上随机选取了M辆纯电动乘用车,根据其续驶里程R(单次充电后能行驶的最大里程)作出了频率与频数的统计表:

分组

频数

频率

80≤R<150

2

0.2

150≤R<250

5

x

R≥250

y

z

合计

M

1

(Ⅰ)求x,y,z,M的值;
(Ⅱ)若从这M辆纯电动乘用车中任选2辆,求选到的2辆车续驶里程都不低于150公里的概率;
(Ⅲ)若以频率作为概率,设X为购买一辆纯电动乘用车获得的补贴,求X的分布列和数学期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣2x+alnx(a∈R).
(1)讨论函数f(x)的单调性;
(2)若函数f(x)有两个极值点x1 , x2(x1<x2),且不等式f(x1)≥mx2恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四个小动物换座位,开始是鼠、猴、兔、猫分别坐在 1,2,3,4 号位子上(如图), 第一次前后排动物互换座位,第二次左右列动物互换座位,.....,这样交替进行下去,那么第 2013 次互换座位后,小兔的座位对应的是( )

A. 编号 1 B. 编号 2 C. 编号 3 D. 编号 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一个圆锥的底面半径为1,高为3,在圆锥中有一个半径为x的内接圆柱.

(1)试用x表示圆柱的高;

(2)x为何值时,圆柱的侧面积最大,最大侧面积是多少?

查看答案和解析>>

同步练习册答案