分析 (1)以A为坐标原点,以AC、AB、AA1所在直线分别为x、y、z轴建系,通过平面ABCD的一个法向量与$\overrightarrow{MN}$的数量积为0,即得结论;
(2)求出平面ACB1的法向量,利用向量的夹角公式,求直线AD1和平面ACB1所成角的正弦值;
(3)求出平面ACD1的法向量,即可求点M到平面ACD1的距离.
解答
(1)证明:如图,以A为坐标原点,以AC、AB、AA1所在直线分别为x、y、z轴建系,
则A(0,0,0),B(0,1,0),C(2,0,0),D(1,-2,0),A1(0,0,2),B1(0,1,2),C1(2,0,2),D1(1,-2,2),
又∵M、N分别为B1C、D1D的中点,∴M(1,$\frac{1}{2}$,1),N(1,-2,1).
由题可知:$\overrightarrow{n}$=(0,0,1)是平面ABCD的一个法向量,$\overrightarrow{MN}$=(0,-$\frac{5}{2}$,0),
∵$\overrightarrow{n}•\overrightarrow{MN}$=0,MN?平面ABCD,∴MN∥平面ABCD;
(2)解:设平面ACB1的法向量为$\overrightarrow{m}$=(x,y,z),
∵$\overrightarrow{AC}$=(2,0,0),$\overrightarrow{A{B}_{1}}$=(0,1,2),
∴$\left\{\begin{array}{l}{2x=0}\\{y+2z=0}\end{array}\right.$,∴取$\overrightarrow{m}$=(0,2,-1),
∵$\overrightarrow{A{D}_{1}}$=(1,-2,2),
∴直线AD1和平面ACB1所成角的正弦值=|$\frac{-4-2}{\sqrt{5}•\sqrt{9}}$|=$\frac{2\sqrt{5}}{5}$;
(3)解:设平面ACD1的法向量为$\overrightarrow{m′}$=(x′,y′,z′),
则∵$\overrightarrow{AC}$=(2,0,0),$\overrightarrow{A{D}_{1}}$=(1,-2,2),
∴$\left\{\begin{array}{l}{2x′=0}\\{x′-2y′+2z′=0}\end{array}\right.$,∴取$\overrightarrow{m′}$=(0,1,1),
∵$\overrightarrow{AM}$=(1,$\frac{1}{2}$,1),∴点M到平面ACD1的距离d=$\frac{\frac{1}{2}+1}{\sqrt{2}}$=$\frac{3\sqrt{2}}{4}$.
点评 本题考查直线与平面平行、点M到平面ACD1的距离、直线与平面所成的角等基础知识,考查用空间向量解决立体几何问题的方法,考查空间想象能力、运算能力和推理能力,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $({\frac{2}{3},+∞})$ | B. | (1,+∞) | C. | $({\frac{2}{3},1})∪({1,+∞})$ | D. | $({\frac{2}{3},\frac{5}{3}})∪({\frac{5}{3},+∞})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | $\frac{π}{4}$ | C. | $\frac{π}{2}$ | D. | π |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,2) | B. | [1,2] | C. | [1,2) | D. | (1,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com