分析 (1)求出函数的导数,解关于导函数的方程,求出函数的单调区间即可;
(2)通过讨论$\frac{{t}^{2}+(2n-1)t}{2}$的范围,求出函数的单调区间,从而求出函数的极值点即可;
(3)根据函数的单调性得到f(n+$\frac{1}{n}$)<f(n),代入证明即可.
解答 (1)解:由题意得:f′(x)=$\frac{n}{x}$-ex-n,
令f′(n)=1-en-n=0,
则x∈(0,n)时,f′(x)>0,x∈(n,+∞)时,f′(x)<0,
∴f(x)在(0,n)递增,在(n,+∞)递减;
(2)解:①当$\frac{{t}^{2}+(2n-1)t}{2}$≤n时,即t2+(2n-1)t-2n≤0,
即(t+2n)(t-1)≤0,由题意t∈(0,2),解得:0<t≤1,
此时,由(1)知:(0,$\frac{{t}^{2}+(2n-1)t}{2}$)⊆(0,n),
∴f(x)在(0,$\frac{{t}^{2}+(2n-1)t}{2}$)递增,无极值点,
②当$\frac{{t}^{2}+(2n-1)t}{2}$>n时,即t2+(2n-1)t-2n>0,
由题意t∈(0,2),解得:1<t<2,
此时,由(1)知:f(x)在(0,n)递增,在(n,$\frac{{t}^{2}+(2n-1)t}{2}$)递减
∴f(x)无极小值点,极大值点是x=n,
综上,0<t≤1时,f(x)无极值点,1<t<2时,f(x)的极大值点是x=n;
(3)证明:由(1)知:f(x)在(0,n)递增,在(n,+∞)递减,
∴f(n+$\frac{1}{n}$)<f(n),
即nln(n+$\frac{1}{n}$)-$\frac{{e}^{n+\frac{1}{n}}}{{e}^{n}}$+2016<nlnn-1+2016,
得nln(n+$\frac{1}{n}$)-${e}^{\frac{1}{n}}$<nlnn-1,
∴ln$\frac{{n}^{2}+1}{{n}^{2}}$<$\frac{{e}^{\frac{1}{n}}-1}{n}$.
点评 本题考查了函数的单调性、最值、极值问题,考查导数的应用以及不等式的证明,是一道中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | b2-4ac>0 | B. | b>0,c>0 | C. | b=0,c>0 | D. | b2-3ac≤0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{19}{32}$ | B. | $\frac{9}{16}$ | C. | $\frac{5}{8}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{5}}}{5}$ | B. | $\frac{{2\sqrt{5}}}{5}$ | C. | $\frac{{3\sqrt{5}}}{5}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com