精英家教网 > 高中数学 > 题目详情
5.函数f(x)=ln(x2-3x+2)的单调减区间为(-∞,1).

分析 求出函数的定义域,结合复合函数的单调性的关系进行求解即可.

解答 解:由x2-3x+2>0得x>2或x<1,
设t=x2-3x+2,
则y═lnt为增函数,
要求函数f(x)=ln(x2-3x+2)的单调减区间,
即求函数t=x2-3x+2的递减区间,
∵t=x2-3x+2的递减区间为(-∞,1),
∴函数f(x)=ln(x2-3x+2)的单调减区间为(-∞,1),
故答案为:(-∞,1).

点评 本题主要考查函数单调区间的求解,利用复合函数单调性的关系,结合对数函数和一元二次函数的单调性是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.在平面直角坐标系xOy中,E′F′两点的坐标分别为(0,$\sqrt{3}$),(0,-$\sqrt{3}$),动点G满足:直线E′G与直线F′G的斜率之积为-$\frac{3}{4}$.
(1)求动点G的轨迹方程;
(2)过点O作两条互相垂直的射线,与(1)中的轨迹分别交于A,B两点,求△OAB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在边长为1的等边△ABC中D、E分别为AB、AC上的点,点A关于直线DE的对称点A1恰好在线段BC上,
(1)∠A1AB=θ∈[0,$\frac{π}{3}$],用θ表示AD;
(2)求AD长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设集合A={x||x-1|-|x-5|≤-2},集合B为函数y=lg(x-1)的定义域,则A∩B=(  )
A.(1,2)B.[1,2]C.[1,2)D.(1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=ex-ax(a为常数)的图象与y轴交于点A,曲线y=f(x)在点A处的切线斜率为-1.
(1)求a的值及函数f(x)的极值;
(2)设g(x)=ex-x2,当x>0时,g(x)>0恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知A(2,3),B(1,4),且$\frac{1}{2}$$\overrightarrow{AB}$=(sinx,cosy),x,y∈(-$\frac{π}{2}$,$\frac{π}{2}$),则x+y=$\frac{π}{6}$或-$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设函数f(x)=nlnx-$\frac{{e}^{x}}{{e}^{n}}$+2016,n为大于零的常数.
(1)求f(x)的单调区间;
(2)若x∈(0,$\frac{{t}^{2}+(2n-1)t}{2}$),t∈(0,2),求函数f(x)的极值点;
(3)观察f(x)的单调性及最值,证明:ln$\frac{{n}^{2}+1}{{n}^{2}}$<$\frac{{e}^{\frac{1}{n}}-1}{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)求复数$\frac{{{{({1+i})}^2}}}{1-i}$的实部;
(2)已知$\frac{m}{1+i}$=1-ni(m,n∈R,i是虚数单位),求m,n.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在等差数列{an}中,前n项和为Sn,若a1>0且3a5=5a8,则数列{an}前(  )项和最大.
A.10B.11C.11或12D.12

查看答案和解析>>

同步练习册答案