分析 (1)由(2c-a)cosB-bcosA=0,利用正弦定理、和差公式即可得出.
(2)由正弦定理、和差公式可得:a+c=4$sin(A+\frac{π}{6})$,再利用A∈$(0,\frac{2π}{3})$,三角函数的单调性即可得出.
解答 解:(1)在△ABC中,∵(2c-a)cosB-bcosA=0,由正弦定理可得:(2sinC-sinA)cosB-sinBcosA=0.
∴2sinCcosB-sin(B+A)=0,即2sinCcosB-sinC=0,
∵sinC≠0,∴cosB=$\frac{1}{2}$,
∵B∈(0,π),∴B=$\frac{π}{3}$.
(2)由正弦定理可得:a+c=$\frac{bsinA}{sinB}$+$\frac{bsinC}{sinB}$=$\frac{2}{sin\frac{π}{3}}$(sinA+sinC)=$\frac{4}{\sqrt{3}}$(sinA+sin($\frac{2π}{3}$-A))=$\frac{4}{\sqrt{3}}$$(\frac{3}{2}sinA+\frac{\sqrt{3}}{2}cosA)$=4$sin(A+\frac{π}{6})$,
∵A∈$(0,\frac{2π}{3})$,∴(A+$\frac{π}{6}$)∈$(\frac{π}{6},\frac{5π}{6})$,∴$sin(A+\frac{π}{3})$∈($\frac{1}{2}$,1].
∴4$sin(A+\frac{π}{6})$∈(2,4].
点评 本题考查了正弦定理、和差公式、三角函数的单调性与值域、和差公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | |$\overrightarrow{a}$|=|$\overrightarrow{b}$|,$\overrightarrow{a}$=±$\overrightarrow{b}$ | B. | 若$\overrightarrow{a}$∥$\overrightarrow{b}$,则$\overrightarrow{a}$=$\overrightarrow{b}$ | ||
| C. | 若$\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{b}$•$\overrightarrow{c}$,则$\overrightarrow{a}$=$\overrightarrow{c}$ | D. | 若$\overrightarrow{a}$∥$\overrightarrow{b}$,$\overrightarrow{b}$∥$\overrightarrow{c}$($\overrightarrow{b}$≠0),则$\overrightarrow{a}$∥$\overrightarrow{c}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{5}}}{5}$ | B. | $\frac{{2\sqrt{5}}}{5}$ | C. | $\frac{{3\sqrt{5}}}{5}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com