精英家教网 > 高中数学 > 题目详情
18.如图所示的电路有a,b,c三个开关,每个开关开或关的概率都是$\frac{1}{2}$,且是相互独立的,则灯泡甲亮的概率为$\frac{1}{8}$.

分析 要使灯泡甲亮,必须a、c两个开关都闭合,而开关b必须断开,再根据相互独立事件的概率乘法公式求得结果.

解答 解:由题意可得,要使灯泡甲亮,必须a、c两个开关都闭合,而开关b必须断开,否则短路,
故灯泡甲亮的概率为$\frac{1}{2}×\frac{1}{2}×(1-\frac{1}{2})$=$\frac{1}{8}$,
故答案为:$\frac{1}{8}$.

点评 本题主要考查相互独立事件的概率乘法公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知正实数a,b满足:a+b=2,记$\frac{1}{a}+\frac{1}{b}$的最小值m.设函数$f(x)=|x-t|+|x+\frac{1}{t}|(t≠0)$,若存在实数x,使得f(x)=m,则x的取值范围为(  )
A.[-1,1]B.[-2,2]C.[-1,0]D.[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知直线l的参数方程为$\left\{\begin{array}{l}{x=\frac{1}{2}t}\\{y=-1+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数),曲线C的参数方程为$\left\{\begin{array}{l}{x=\frac{\sqrt{6}}{6}cosθ}\\{y=\frac{\sqrt{2}}{2}sinθ}\end{array}\right.$(θ为参数)
(1)求直线l与曲线C的普通方程;
(2)设点P是曲线C上的一个动点,求点P到直线l的距离的最大值及此时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若函数f(x)=sin($\frac{π}{4}$+x)sin($\frac{π}{4}$-x),则f(x)在[-$\frac{π}{8}$,$\frac{π}{8}$]上的最大值为(  )
A.$\frac{\sqrt{2}}{4}$B.$\frac{\sqrt{2}}{2}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知2弧度的圆心角所对的弦长为4,那么这个圆心角所对的弧长为(  )
A.4B.sin 2C.$\frac{4}{sin1}$D.4sin 1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.(1-x)10的展开式中x3的系数为(  )
A.-120B.120C.-45D.45

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知实数x,y,z满足x+y+z=1,则x2+y2+z2的最小值为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.三棱柱ABC-A1B1C1中,侧棱AA1⊥平面ABC,△ABC为等腰直角三角形,∠BAC=90°且AB=AA1,D,E,F分别是B1A,CC1,BC的中点.
(1)求证:DE∥平面ABC;
(2)求证:B1F⊥平面AEF.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知一圆的圆心为(2,3),一条直径的端点分别在x,y轴上,则此圆的方程是(x-2)2+(y-3)2=13.

查看答案和解析>>

同步练习册答案