精英家教网 > 高中数学 > 题目详情

在四面体ABCD中,有如下结论:
①若,则
②若分别是的中点,则的大小等于异面直线所成角的大小;
③若点是四面体外接球的球心,则在面上的射影为的外心;
④若四个面是全等的三角形,则为正四面体.
其中所有正确结论的序号是          .

①③

解析试题分析:对于①,如图(1),作,则有,而,所以,所以,同理可证,故为三角形的垂心,所以,而,所以平面,故,命题正确;对于②,应该讲当为锐角或直角时,等于异面直线所成的角,当为钝角时,的补角才等于异面直线所成的角,命题不正确;对于③,根据球的性质:球心与小圆圆心(本题中相当于外接圆的圆心)相连垂直于小圆所在的平面,可知该命题正确;对于④,如下图(2),其中,易知该三棱锥的四个面都是全等的三角形,但该三棱锥并不是正四面体.
               
考点:1.空间中的垂直问题;2.异面直线成角的理解;3.球的性质;4.正四面体的结构.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

若空间中有两条直线,则“这两条直线为异面直线”是“这两条直线没有公共点”的__________条件.(填“充分不必要”、“必要不充分”、“充要”、“既不充分又不必要”)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

如图,平面平面,四边形是正方形,四边形是矩形,且的中点,则与平面所成角的正弦值为___________.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

下面给出五个命题:
①已知平面//平面是夹在间的线段,若//,则
是异面直线,是异面直线,则一定是异面直线;
③三棱锥的四个面可以都是直角三角形。
④平面//平面//,则
⑤三棱锥中若有两组对棱互相垂直,则第三组对棱也一定互相垂直;
其中正确的命题编号是             (写出所有正确命题的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

如图,将边长为的正方形沿对角线折起,使得平面平面,在折起后形成的三棱锥中,给出下列三个命题:
是等边三角形;②;③三棱锥的体积是;④AB与CD所成的角是60°。其中正确命题的序号是          .(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知三角形所在平面与矩形所在平面互相垂直,,若点都在同一球面上,则此球的表面积等于      .

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

在棱长为1的正方体ABCD﹣A1B1C1D1中,过对角线BD1的一个平面交AA1于E,交CC1于F,得四边形BFD1E,给出下列结论:
①四边形BFD1E有可能为梯形
②四边形BFD1E有可能为菱形
③四边形BFD1E在底面ABCD内的投影一定是正方形
④四边形BFD1E有可能垂直于平面BB1D1D
⑤四边形BFD1E面积的最小值为
其中正确的是      (请写出所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知棱长为1的正方体ABCD-A1B1C1D1中,E是A1B1的中点,求直线AE与平面ABC1D1所成角的正弦值                    

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

如图所示,在直三棱柱ABC-A1B1C1中,底面为直角三角形,∠ACB=90°,AC=6,BCCC1PBC1上一动点,则CPPA1的最小值是________.

查看答案和解析>>

同步练习册答案