精英家教网 > 高中数学 > 题目详情
19.如图,四棱锥P-ABCD中,底面ABCD为平行四边形,且AC=BD,平面PA⊥平面ABCD,E为PD的中点.
(Ⅰ)证明:PB∥平面AEC;
(Ⅱ)在△PAD中,AP=2,AD=2$\sqrt{3}$,PD=4,三棱锥E-ACD的体积是$\sqrt{3}$,求二面角D-AE-C的大小.

分析 (Ⅰ)连结BD交AC于点O,连结EO,则EO∥PB,由此能证明PB∥平面AEC.
(Ⅱ)推导出PA⊥AD.则PA⊥平面ABC,以A为坐标原点,$\overrightarrow{AB}$的方向为x轴的正方向,$|{\overrightarrow{AP}}|$为单位长,建立空间直角坐标系A-xyz,利用向量法能求出二面角D-AE-C的大小.

解答 证明:(Ⅰ)连结BD交AC于点O,连结EO.
∵ABCD是平行四边形,∴O为BD的中点.
又E为PD的中点,∴EO∥PB.
∵EO?平面AEC,PB?平面AEC,∴PB∥平面AEC.
解:(Ⅱ)∵在△PAD中,$AP=2,AD=2\sqrt{3},PD=4$,
∴AP2+AD2=PD2,∴∠PAD=90°,∴PA⊥AD.
又∵平面PAD⊥平面ABC,∴PA⊥平面ABC,
在平行四边形ABCD中,AC=BD,∴ABCD为矩形,
∴AB,AD,AP两两垂直.
如图,以A为坐标原点,$\overrightarrow{AB}$的方向为x轴的正方向,$|{\overrightarrow{AP}}|$为单位长,建立空间直角坐标系A-xyz,
∵E为PD的中点,∴三棱锥E-ACD的高为$\frac{1}{2}$,
设AB=m(m>0),三棱锥E-ACD的体积$V=\frac{1}{3}×\frac{1}{2}×2\sqrt{3}×m×1=\sqrt{3}$,解得m=3=AB.
则$A(0,0,0),D(0,2\sqrt{3},0),E(0,\sqrt{3},1)$,$\overrightarrow{AE}=(0,\sqrt{3},1)$,
设B(3,0,0)(m>0),则$C(3,2\sqrt{3},0),\overrightarrow{AC}=(3,2\sqrt{3},0)$.
设$\overrightarrow{n_1}=(x,y,z)$为平面ACE的法向量,
则$\left\{{\begin{array}{l}{\overrightarrow{n_1}•\overrightarrow{AC}=0}\\{\overrightarrow{n_1}•\overrightarrow{AE}=0}\end{array}}\right.$,即$\left\{{\begin{array}{l}{3{x_1}+2\sqrt{3}{y_1}=0}\\{\sqrt{3}{y_1}+{z_1}=0}\end{array}}\right.$,取y=-1,得$\overrightarrow{n_1}=(\frac{{2\sqrt{3}}}{3},-1,\sqrt{3})$.
又$\overrightarrow{n_2}=(1,0,0)$为平面DAE的法向量,
由题设$|{cos<\overrightarrow{n_1},\overrightarrow{n_2}>}|=\frac{{|{\overrightarrow{n_1}•\overrightarrow{n_2}}|}}{{|{\overrightarrow{n_1}}||{\overrightarrow{n_2}}|}}=\frac{{\frac{{2\sqrt{3}}}{3}}}{{\frac{{4\sqrt{3}}}{3}}}=\frac{1}{2}$,
即二面角D-AE-C的大小是60°.

点评 本题考查线面平行的证明,考查二面角的大小的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.在四棱锥P-ABCD中,侧面PCD⊥底面ABCD,PD⊥CD,E为PC中点,底面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2.
(Ⅰ)求证:BE∥平面PAD;
(Ⅱ)求证:BC⊥平面PBD;
(Ⅲ)在线段PC上是否存在一点Q,使得二面角Q-BD-P为45°?若存在,求$\frac{{|{PQ}|}}{{|{PC}|}}$的值;若不存在,请述明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,AB为圆O的直径,C在圆O上,CF⊥AB于F,点D为线段CF上任意一点,延长AD交圆O于E,∠AEC=30°.
(1)求证:AF=FO;
(2)若CF=$\sqrt{3}$,求AD•AE的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,∠A=2∠B,∠C的平分线交AB于点D,∠A的平分线交CD于点E.求证:AD•BC=BD•AC.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知定义在R上的函数f(x)满足f(1)=1,且对于任意的xf′(x)$<\frac{1}{2}$恒成立,则不等式f(lg2x)<$\frac{l{g}^{2}x}{2}$+$\frac{1}{2}$的解集为$(0,\frac{1}{10})∪(10,+∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知双曲线的焦点在y轴上,并且双曲线过点(3,-4$\sqrt{2}$),($\frac{9}{4}$,5),则双曲线的标准方程为(  )
A.$\frac{y^2}{16}-\frac{x^2}{9}=1$B.$\frac{y^2}{16}-\frac{x^2}{9}=-1$C.$\frac{x^2}{16}-\frac{y^2}{9}=1$D.$\frac{x^2}{16}-\frac{y^2}{9}=-1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.函数y=2x3-6x2+m在区间[-2,2]上有最大值3,求它的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知实数a满足1<a<2,命题p:函数y=lg(2-ax)在区间[0,1]上是减函数;命题q:x2<1是x<a的充分不必要条件,则(  )
A.p或q为真命题B.p且q为假命题C.?p且q为真命题D.?p或?q为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.长方体ABCD-A1B1C1D1中,已知A1A=$\sqrt{2}$,AD=1,AB=1,则对角线AC1与平面ABCD所成角为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

同步练习册答案