精英家教网 > 高中数学 > 题目详情
4.已知双曲线的焦点在y轴上,并且双曲线过点(3,-4$\sqrt{2}$),($\frac{9}{4}$,5),则双曲线的标准方程为(  )
A.$\frac{y^2}{16}-\frac{x^2}{9}=1$B.$\frac{y^2}{16}-\frac{x^2}{9}=-1$C.$\frac{x^2}{16}-\frac{y^2}{9}=1$D.$\frac{x^2}{16}-\frac{y^2}{9}=-1$

分析 根据题意,假设双曲线的标准方程,将两点的坐标代入,即可求得双曲线的标准方程.

解答 解:由题意,设双曲线方程为:$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0).
∵双曲线过点(3,-4$\sqrt{2}$),($\frac{9}{4}$,5),
∴$\frac{32}{{a}^{2}}$-$\frac{9}{{b}^{2}}$=1,$\frac{25}{{a}^{2}}$-$\frac{\frac{81}{16}}{{b}^{2}}$=1
∴b2=9,a2=16
∴双曲线方程为:$\frac{y^2}{16}-\frac{x^2}{9}=1$.
故选:A.

点评 本题的考点是双曲线的标准方程,考查待定系数法求双曲线的标准方程,假设方程是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知曲线E的极坐标方程为$ρ=\frac{4tanθ}{cosθ}$,倾斜角为α的直线l过点P(2,2).
(1)求E的直角坐标方程和直线l的参数方程;
(2)设l1,l2是过点P且关于直线x=2对称的两条直线,l1与E交于A,B两点,l2与E交于C,D两点.求证:|PA|:|PD|=|PC|:|PB|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,三棱柱ADE-BCF中,四边形ABCD为平行四边形,DE⊥平面ABCD,AD=DE=1,AB=2,∠BCD=60°.
(I)求证:BD⊥AE;
(Ⅱ)若GE=$\frac{1}{2}$DE,求直线CG与平面BDF所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若m,n是实数,且m>n,则下列结论成立的是(  )
A.lg(m-n)>0B.($\frac{1}{2}$)m<($\frac{1}{2}$)nC.$\frac{n}{m}$<1D.m2>n2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,四棱锥P-ABCD中,底面ABCD为平行四边形,且AC=BD,平面PA⊥平面ABCD,E为PD的中点.
(Ⅰ)证明:PB∥平面AEC;
(Ⅱ)在△PAD中,AP=2,AD=2$\sqrt{3}$,PD=4,三棱锥E-ACD的体积是$\sqrt{3}$,求二面角D-AE-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知命题p:x2-x≥6,命题q:|x-2|≤3;若p∧q与?q同时为假命题,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.(1+a+a2)(a-$\frac{1}{a}}$)6的展开式中的常数项为(  )
A.-2B.-3C.-4D.-5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知集合A=[0,4),集合B={x|x2-2x≥3,x∈N},则A∩B=(  )
A.{x|3≤x<4}B.{x|0≤x<3}C.{3}D.{3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.给出下面类比推理命题(其中Q为有理数集,R为实数集,C为复数集):
①“若a、b∈R,则a-b=0⇒a=b”类比推出“a、b∈C,则a-b=0⇒a=b”;
②“若a、b∈R,则a-b>0⇒a>b”类比推出“若a、b∈C,则a-b>0⇒a>b;
③“若a、b、c、d∈R,则复数a+bi=c+di⇒a=c,b=d”类比推出“a、b、c、d∈Q,则a+b$\sqrt{2}$=c+d$\sqrt{2}$⇒a=c,b=d”;
④若“x∈R,则|x|<1⇒-1<x<1”类比推出z∈C,则|z|<1⇒-1<z<1.
上述类比中正确的序号是①③.

查看答案和解析>>

同步练习册答案