精英家教网 > 高中数学 > 题目详情
9.长方体ABCD-A1B1C1D1中,已知A1A=$\sqrt{2}$,AD=1,AB=1,则对角线AC1与平面ABCD所成角为(  )
A.30°B.45°C.60°D.90°

分析 连接AC,则∠C1AC是对角线AC1与平面ABCD所成的角,根据三角形的边角关系进行求解即可.

解答 解:连接AC,
则长方体中,C1C⊥平面ABCD,
则∠C1AC是对角线AC1与平面ABCD所成的角,
∵AD=1,AB=1,
∴AC=$\sqrt{2}$,
∵A1A=$\sqrt{2}$,
∴tan∠C1AC=$\frac{C{C}_{1}}{AC}$=$\frac{\sqrt{2}}{\sqrt{2}}$=1,
即∠C1AC=45°,
故选:B.

点评 本题主要考查直线和平面所成角的求解,根据条件作出线面角的平面角是解决本题的关键.比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.如图,四棱锥P-ABCD中,底面ABCD为平行四边形,且AC=BD,平面PA⊥平面ABCD,E为PD的中点.
(Ⅰ)证明:PB∥平面AEC;
(Ⅱ)在△PAD中,AP=2,AD=2$\sqrt{3}$,PD=4,三棱锥E-ACD的体积是$\sqrt{3}$,求二面角D-AE-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.数列{an} 满足a1=1,an+1=2an+3(n∈N*),则a4=29.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设数列{an}的前n项和为Sn,且a1=1,nan+1=2Sn,n∈N*.
(1)求数列{an}的通项公式;
(2)已知f(log2x)=x2-x,若存在实数k,对于任意的自然数n(n≥2),f(an)≥k•4n,求k的最大值.
(3)在(2)条件下,求证:$\frac{1}{f({a}_{1})}+\frac{1}{f({a}_{2})}$+…+$\frac{1}{f({a}_{n})}$<$\frac{11}{18}$(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.现用数学归纳法证明“平面内n条直线,最多将平面分成$\frac{{{n^2}+n+2}}{2}$个区域”,过程中由n=k到 n=k+1时,应证明区域个数增加了(  )
A.k+1B.2k+1C.k2+1D.(k+1)2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.给出下面类比推理命题(其中Q为有理数集,R为实数集,C为复数集):
①“若a、b∈R,则a-b=0⇒a=b”类比推出“a、b∈C,则a-b=0⇒a=b”;
②“若a、b∈R,则a-b>0⇒a>b”类比推出“若a、b∈C,则a-b>0⇒a>b;
③“若a、b、c、d∈R,则复数a+bi=c+di⇒a=c,b=d”类比推出“a、b、c、d∈Q,则a+b$\sqrt{2}$=c+d$\sqrt{2}$⇒a=c,b=d”;
④若“x∈R,则|x|<1⇒-1<x<1”类比推出z∈C,则|z|<1⇒-1<z<1.
上述类比中正确的序号是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知一个盒子中装有3个黑球和4个白球,现从该盒中摸出3个球,假设每个球被摸到的可能性相同.
(Ⅰ)若每次摸一个球,摸后不放回,求三次摸到的球的颜色依次为“白,黑,白”的概率;
(Ⅱ)设摸到的白球的个数为m,黑球的个数为n,令X=m-n,求X的分布列和数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{xlnx}{x-1}$.求曲线f(x)在点(e,f(e))(e为自然对数的底数)处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)为定义在[-1,1]上的偶函数,且在[0,1]上为单调递增函数,则f(2x+1)>f(${\frac{x}{2}$+1)的解集为[-1,-$\frac{4}{5}$).

查看答案和解析>>

同步练习册答案