【题目】如图,二面角α﹣l﹣β的大小为60°,A∈β,C∈α,且AB、CD都垂直于棱l,分别交棱l于B、D.已知BD=1,AB=2,CD=3,则AC= . ![]()
科目:高中数学 来源: 题型:
【题目】某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需要增加投入100元,最大月产量是400台.已知总收益满足函数
,其中x是仪器的月产量(单位:台).
(1)将利润y(单位:元)表示为月产量x(单位:台)的函数;
(2)当月产量为何值时,公司所获得利润最大?最大利润为多少?(总收益=总成本+利润).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数g(x)=aln x,f(x)=x3+x2+bx.
(1)若f(x)在区间[1,2]上不是单调函数,求实数b的范围;
(2)若对任意x∈[1,e],都有g(x)≥﹣x2+(a+2)x恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lg(ax2+ax+2)(a∈R).
(1)若a=﹣1,求f(x)的单调区间;
(2)若函数f(x)的定义域为R,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在空间直角坐标系中有直三棱柱ABC﹣A1B1C1 , CA=2CB,CC1=3CB,则直线BC1与直线AB1夹角的余弦值为( )![]()
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)是定义在[﹣2,2]上的奇函数,且f(2)=3,若对任意的m,n∈[﹣2,2],m+n≠0,都有
>0.
(1)若f(2a﹣1)<f(a2﹣2a+2),求实数a的取值范围;
(2)若不等式f(x)≤(5﹣2a)t+1对任意x∈[﹣2,2]和a∈[﹣1,2]都恒成立,求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=ax2+x﹣a.a∈R
(1)若不等式f(x)<b的解集为(﹣∞,﹣1)∪(3,+∞),求a,b的值;
(2)若a<0,解不等式f(x)>1.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}满足a3=7,a5+a7=26,数列{an}的前n项和Sn . (Ⅰ)求an及Sn;
(Ⅱ)令bn=
(n∈N*),求数列{bn}的前n项和Tn .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com