精英家教网 > 高中数学 > 题目详情
18.若方程|2x-1|=m只有一解,则实数m的取值范围是m=0或m≥1.

分析 作函数y=|2x-1|的图象,从而利用数形结合求解.

解答 解:作函数y=|2x-1|的图象如下,

结合图象可知,
当m=0或m≥1时,方程|2x-1|=m只有一解;
故答案为:m=0或m≥1.

点评 本题考查了数形结合的思想应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知二次函数f(x)=ax2+bx+c(a,b,c∈R),f(-2)=f(0)=0,f(x)的最小值为-1.
(1)求函数f(x)的解析式;
(2)设g(x)=f(-x)-λf(x)+1,若g(x)在[-1,1]上是减函数,求实数λ的取值范围;
(3)设函数h(x)=f(x)-2x,是否存在非负实数m,n,使得函数h(x)的定义域为[m,n],值域为[2m,2n],若存在,求出m,n的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列函数中,值域为(0,+∞)的函数是(  )
A.y=3${\;}^{\frac{2}{x}}$B.y=$\sqrt{{2}^{x}-1}$C.y=$\sqrt{{2}^{x}+1}$D.y=($\frac{1}{2}$)2-x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数y=2x+2-3•4x在[-1,0]上的最大值是$\frac{4}{3}$,最小值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知f(x)=$\frac{k}{x}$+2(k∈R),若f(lg2)=0,则f(lg$\frac{1}{2}$)=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=$\left\{\begin{array}{l}{-lo{g}_{3}x,x>0}\\{{2}^{x},x≤0}\end{array}\right.$,则f(3)=-1,f(f(9))=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=|x-1|和g(x)=x(4-x)的单调递增区间分别是(  )
A.(-∞,1]和(-∞,2]B.[1,+∞)和(-∞,2]C.(-∞,1]和[2,+∞)D.[1,+∞)和[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若a=(2+$\sqrt{3}$)-1,b=(2-$\sqrt{3}$)-1,则(a-2)2+(b-2)2的值是(  )
A.1B.2$\sqrt{3}$C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)是对数函数,且f(b2-2b+5)的最大值为-2,其中b∈R,求函数f(x)的解析式.

查看答案和解析>>

同步练习册答案