精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=-x3+a2x(a∈R),若曲线y=f(x)在点P(1,f(1))处的切线的倾斜角为$\frac{π}{4}$,则该切线方程为x-y+2=0.

分析 求出函数的导数,可得切线的斜率和切点,运用点斜式方程可得所求切线的方程.

解答 解:函数f(x)=-x3+a2x的导数为f′(x)=-3x2+a2
曲线y=f(x)在点P(1,f(1))处的切线的倾斜角为$\frac{π}{4}$,
可得切线的斜率为1,即有-3+a2=1,
解得a=±2.
可得f(1)=-1+4=3,即P(1,3),
即有切线的方程为y-3=x-1,即为x-y+2=0.
故答案为:x-y+2=0.

点评 本题考查导数的运用:求切线的方程,考查导数的几何意义,正确求导和运用直线的点斜式方程是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.如图(a)已知线段BD=4,A,C关于BD对称,以BD为直径作圆,经过A,C两点,BA=2,延长DA,CB交于点P,将△PAB沿AB折起,使点P至点Q位置,得到图(b)所示空间图形,其中Q在平面ABCD内的射影恰为线段AD中点N,QD中点为M.
(1)求证:QD⊥平面ABM;
(2)求四棱锥M-ABCN体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知底面为正方形的四棱锥O-ABCD,各侧棱长都为$2\sqrt{3}$,底面面积为16,以O为球心,以2为半径作一个球,则这个球与四棱锥O-ABCD相交部分的体积是(  )
A.$\frac{2π}{9}$B.$\frac{8π}{9}$C.$\frac{16π}{9}$D.$\frac{4π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在直三棱锥ABC-A1B1C1中,AB⊥CB1,AB=BC=2,AA1=4,则该三棱柱外接球的表面积为24π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.执行如图所示的程序框图,若输入的A,S分别为0,1,则输出的S=(  )
A.4B.16C.27D.36

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(1)若$y={log_{\frac{1}{3}}}(m{x^2}+2x+m)$的定义域为R,求实数m的取值范围;
(2)当x∈[-1,1]时,求函数$y={[{(\frac{1}{3})^x}]^2}-2a•{(\frac{1}{3})^x}+3$的最小值h(a).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知二次函数f(x)=ax2+bx+c(a>0)的图象过点(1,0).
(1)记函数f(x)在[0,2]上的最大值为M,若M≤1,求a的最大值;
(2)若对任意的x1∈[0,2],存在x2∈[0,2],使得f(x1)+f(x2)>$\frac{3}{2}$a,求$\frac{b}{a}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.2013年,首都北京经历了59年来雾霾天气最多的一个月.经气象局统计,北京市从1月1日至1月30日这30天里有26天出现雾霾天气.《环境空气质量指数(AQI)技术规定(试行)》依据AQI指数高低将空气污染级别分为:优,指数为0-50;良,指数为51-100;轻微污染,指数为101-150;轻度污染,指数为151-200;中度污染,指数为201-250;中度重污染,指数为251-300;重度污染,指数大于300.下面表1是某气象观测点记录的北京1月1日到1月30日AQI指数频数统计结果,表2是该观测点记录的4天里,AQI指数M与当天的空气水平可见度y(千米)的情况,
表1:北京1月1日到1月30日AQI指数频数统计
AQI指数[0,200](200,400](400,600](600,800](800,1000]
频数361263
表2:AQI指数M与当天的空气水平可见度y(千米)情况
AQI指数M900700300100
空气可见度y(千米)0.53.56.59.5
(1)小王在记录表1数据的观测点附近开了一家小饭馆,饭馆生意的好坏受空气质量影响很大.假设每天空气质量的情况不受前一天影响.经小王统计:AQI指数不高于200时,饭馆平均每天净利润约700元,AQI指数在200至400时,饭馆平均每天净利润约400元,AQI指数大于400时,饭馆每天要净亏损200元,求小王某一天能够获利的概率;
(2)设变量x=$\frac{M}{100}$,根据表2的数据,求出y关于x的线性回归方程;
(用最小二乘法求线性回归方程系数公式b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,a=$\overline{y}$-b$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设a>b>1,c<0给出下列三个结论:
①$\frac{c}{a}$>$\frac{c}{b}$;②ac<bc;③logb(a-c)>loga(b-c);④aln(-c)>bln(-c).
其中所有正确命题的序号是①②③.

查看答案和解析>>

同步练习册答案