分析 根据题意判断直三棱柱ABC-A1B1C1的底面ABC为等腰直角三角形,我们可以把直三棱柱ABC-A1B1C1补成正四棱柱,则正四棱柱的体对角线是其外接球的直径,求出外接球的直径后,代入外接球的表面积公式,即可求出该三棱柱的外接球的表面积
解答
解:
∵在直三棱锥ABC-A1B1C1中,AB⊥CB1,AB=BC=2,AA1=4,
∴AB⊥面BCC1B1,
即AB⊥BC
∴直三棱柱ABC-A1B1C1的底面ABC为等腰直角三角形,
把直三棱柱ABC-A1B1C1补成正四棱柱,
则正四棱柱的体对角线是其外接球的直径,
所以外接球半径为R=$\frac{\sqrt{4+4+16}}{2}$=$\sqrt{6}$,
表面积为24π.
故答案为:24π.
点评 在求一个几何体的外接球表面积(或体积)时,关键是求出外接球的半径,我们通常有如下办法:①构造三角形,解三角形求出R;②找出几何体上到各顶点距离相等的点,即球心,进而求出R;③将几何体补成一个长方体,其对角线即为球的直径,进而求出R
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4$\sqrt{3}$ | B. | 12$\sqrt{3}$ | C. | 18$\sqrt{3}$ | D. | 36$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 城市 | A | B | C | D | E |
| 4S店个数x | 3 | 4 | 6 | 5 | 2 |
| 销量y(台) | 28 | 30 | 35 | 31 | 26 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com