分析 (I)由△ABC为等边三角形可得PA=AC,于是AE⊥PC,通过证明CD⊥平面PAC得出CD⊥AE,故而AE⊥平面PCD;
(II)取AC中点F,连接BF、PF,则可证明BF⊥平面PAC,故∠BPF为PB与平面PAC所成的角,利用勾股定理求出BF,PF即可得出tan∠BPF.
解答
证明:(I)∵∠ABC=60°,AB=BC=PA
∴△ABC为等边三角形,∴PA=AC,
∵E是PC的中点,∴AE⊥PC.
∵PA⊥底面ABCD,CD?底面ABCD,
∴PA⊥CD,
又∵AC⊥CD,PA?平面PAC,AC?平面PAC,PA∩AC=A,
∴CD⊥平面PAC,∵AE?平面PAC,
∴CD⊥AE
又∵AE⊥PC,PC?平面PCD,CD?平面PCD,PC∩CD=C,
∴AE⊥平面PCD.
(II)取AC中点F,连接BF、PF,
∵AB=BC,F为AC中点,∴BF⊥AC,
∵PA⊥底面ABCD,BF?底面ABCD,∴PA⊥BF,
又∵PA?平面PAC,AC?平面PAC,PA∩AC=A,
∴BF⊥平面PAC.
∴∠BPF为PB与平面PAC所成的角,
∵PA⊥底面ABCD,AC?底面ABCD,∴PA⊥AC.
设PA=AB=BC=AC=2a,∴AF=a,PF=$\sqrt{P{A}^{2}+A{F}^{2}}$=$\sqrt{5}a$,$BF=\sqrt{3}a$
∴$tan∠BPF=\frac{{\sqrt{3}a}}{{\sqrt{5}a}}=\frac{{\sqrt{15}}}{5}$,
∴PB和平面PAC所成的角的正切值为$\frac{{\sqrt{15}}}{5}$.
点评 本题考查了线面垂直的判定,线面角的计算,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
| x | 3 | 4 | 5 | 6 |
| y | 2.5 | m | 4 | 4.5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2π}{9}$ | B. | $\frac{8π}{9}$ | C. | $\frac{16π}{9}$ | D. | $\frac{4π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| AQI指数 | [0,200] | (200,400] | (400,600] | (600,800] | (800,1000] |
| 频数 | 3 | 6 | 12 | 6 | 3 |
| AQI指数M | 900 | 700 | 300 | 100 |
| 空气可见度y(千米) | 0.5 | 3.5 | 6.5 | 9.5 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com