精英家教网 > 高中数学 > 题目详情
14.(用空间向量坐标表示解答)如图,在直三棱柱ABC-A1B1C1中,AC=BC=CC1=2,AC⊥BC,D为AB的中点.
(1)求证:AC1∥面B1CD
(2)求直线AA1与面B1CD所成角的正弦值.

分析 (1)以C为坐标原点建立空间直角坐标系,求出平面B1CD的法向量$\overrightarrow{n}$,只需证明$\overrightarrow{A{C}_{1}}$⊥$\overrightarrow{n}$即可;
(2)直线AA1与面B1CD所成角的正弦值为|cos<$\overrightarrow{A{A}_{1}}$,$\overrightarrow{n}$>|.

解答 解:(1)以C为坐标原点,以CA,CB,CC1为坐标轴建立空间直角坐标系,如图所示:
则A(2,0,0),C1(0,0,2),C(0,0,0),D(1,1,0),B1(0,2,2),
∴$\overrightarrow{A{C}_{1}}$=(-2,0,2),$\overrightarrow{CD}$=(1,1,0),$\overrightarrow{C{B}_{1}}$=(0,2,2).
设平面B1CD的法向量为$\overrightarrow{n}$=(x,y,z).则$\overrightarrow{n}•\overrightarrow{CD}=0$,$\overrightarrow{n}•\overrightarrow{C{B}_{1}}$=0,
∴$\left\{\begin{array}{l}{x+y=0}\\{2y+2z=0}\end{array}\right.$,令z=1,得$\overrightarrow{n}$=(1,-1,1).
∴$\overrightarrow{n}•\overrightarrow{A{C}_{1}}$=-2+0+2=0,
∵AC1?平面B1CD,
∴AC1∥面B1CD.
(2)$\overrightarrow{A{A}_{1}}$=$\overrightarrow{C{C}_{1}}$=(0,0,2),
∴$\overrightarrow{A{A}_{1}}•\overrightarrow{n}$=2,|$\overrightarrow{A{A}_{1}}$|=2,$|\overrightarrow{n}|$=$\sqrt{3}$,
∴cos<$\overrightarrow{A{A}_{1}}$,$\overrightarrow{n}$>=$\frac{\overrightarrow{A{A}_{1}}•\overrightarrow{n}}{|\overrightarrow{A{A}_{1}}||\overrightarrow{n}|}$=$\frac{\sqrt{3}}{3}$.
∴直线AA1与面B1CD所成角的正弦值为$\frac{{\sqrt{3}}}{3}$.

点评 本题考查了空间向量在立体几何中的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.三个图中,左面的是一个长方体截去一个角所得多面体的直观图,右面是它的主视图和左视图(单位:cm).

(1)画出该多面体的俯视图;
(2)按照给出的尺寸,求该多面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知两个球的表面积之比为1:4,则这两个球的半径之比为(  )
A.1:4B.1:2C.1:16D.1:64

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知底面为正方形的四棱锥O-ABCD,各侧棱长都为$2\sqrt{3}$,底面面积为16,以O为球心,以2为半径作一个球,则这个球与四棱锥O-ABCD相交部分的体积是(  )
A.$\frac{2π}{9}$B.$\frac{8π}{9}$C.$\frac{16π}{9}$D.$\frac{4π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知圆C:(x-a)2+(y-b)2=1过点A(1,0),则圆C的圆心的轨迹是(  )
A.B.直线C.线段D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在直三棱锥ABC-A1B1C1中,AB⊥CB1,AB=BC=2,AA1=4,则该三棱柱外接球的表面积为24π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.执行如图所示的程序框图,若输入的A,S分别为0,1,则输出的S=(  )
A.4B.16C.27D.36

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知二次函数f(x)=ax2+bx+c(a>0)的图象过点(1,0).
(1)记函数f(x)在[0,2]上的最大值为M,若M≤1,求a的最大值;
(2)若对任意的x1∈[0,2],存在x2∈[0,2],使得f(x1)+f(x2)>$\frac{3}{2}$a,求$\frac{b}{a}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在回归分析的问题中,我们可以通过对数变换把非线性回归方程y=${c_1}{e^{{c_2}x}}$(c1>0)转化为线性回归方程,即两边取对数,令z=lny,得到z=c2x+lnc1.受其启发,可求得函数y=${x^{{{log}_2}x}}$(x>0)的值域是[1,+∞).

查看答案和解析>>

同步练习册答案