精英家教网 > 高中数学 > 题目详情
7.如图,网格纸上的小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积是(  )
A.4+6πB.8+6πC.4+12πD.8+12π

分析 根据三视图知几何体是组合体:下面是半个圆柱、上面是一个以圆柱轴截面为底的四棱锥,并求出圆柱的底面半径、母线,四棱锥的高和底面边长,代入体积公式求值即可.

解答 解:根据三视图知几何体是组合体,
下面是半个圆柱、上面是一个以圆柱轴截面为底的四棱锥,
圆柱的底面半径为2,母线长为3;四棱锥的高是2,底面是边长为4、3的矩形,
∴该几何体的体积V=$\frac{1}{2}×π×{2}^{2}×3+\frac{1}{3}×3×4×2$=6π+8,
故选:B.

点评 本题考查由三视图求几何体的体积,以及几何体的体积公式,考查空间想象能力,三视图正确复原几何体是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.命题p:sinθ-$\frac{1}{tanθ}$=tanθ-$\frac{1}{sinθ}$(0<θ<$\frac{π}{4}$)无实数解,命题q:ex+$\frac{1}{lnx}$=lnx+$\frac{1}{{e}^{x}}$无实数解.则下列命题为假命题的是(  )
A.p或qB.(¬p)或(¬q)C.p且(¬q)D.p且q

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若数列{an}满足an+a${\;}_{n+1}=4n+2(n≥1,n∈{N}^{+})$,且a1=x,{an}单调递增,则x的取值范围是(1,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某校高三文科500名学生参加了1月份的模拟考试,学校为了了解高三文科学生的数学、语文情况,利用随机表法从中抽取100名学生进行统计分析,抽出的100名学生的数学、语文成绩如表:
语文
及格
数学8m9
9n11
及格8911
(1)将学生编号为000,001,002,…499,500,若从第五行第五列的数开始右读,请你依次写出最先抽出的5个人的编号(下面是摘自随机数表的第4~第7行);
12 56 85 99 26  96 96 68 27 31  05 03 72 93 15  57 12 10 14 21  88 26 49 81 76
55 59 56 35 64  38 54 82 46 22  31 62 43 09 90  06 18 44 32 53  23 83 01 30 30
16 22 77 94 39  49 54 43 54 82  17 37 93 23 78  87 35 20 96 43  84 26 34 91 64
84 42 17 53 31  57 24 55 06 88  77 04 74 47 67  21 76 33 50 25  83 92 12 06 76  
(2)若数学成绩优秀率为35%,求m,n的值;
(3)在语文成绩为良的学生中,已知m≥13,n≥11,求数学成绩“优”比良的人数少的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.证明极限$\underset{lim}{(x,y)→(0,0)}$$\frac{xy}{{x}^{2}+{y}^{2}}$不存在.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设{an}是等比数列,已知a1=1,且4a2.2a3,a4成等差数列.
(1)求数列{an}的通项公式;
(2)若Tn=na1+(n-1)a2+…+2an-1+an,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.根据下列条件,确定α是第几象限的角?
(1)tanα•sinα<0;
(2)$\frac{sinα}{cosα}$>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是(  )
A.y=lnxB.y=cosxC.y=-x2D.$y={({\frac{1}{2}})^x}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若lga、lgb是方程x2-5x+3=0的两个根,则a•b=(  )
A.3B.5C.103D.105

查看答案和解析>>

同步练习册答案