精英家教网 > 高中数学 > 题目详情
20.过球O表面上一点A引三条长度相等的弦AB、AC、AD,且两两夹角都为60°,若球半径为R,求弦AB的长度$\frac{2\sqrt{6}}{3}$R.

分析 由条件可抓住A-BCD是正四面体,A,B,C,D为球上四点,则球心在正四面体中心,利用勾股定理建立方程,即可求出弦AB的长度.

解答 解:由题意,球心在正四面体中心,设AB=a,则截面BCD与球心的距离d=$\frac{\sqrt{6}}{3}$a-R,过点B、C、D的截面圆半径r=$\frac{\sqrt{3}}{3}$a,
所以($\frac{\sqrt{3}}{3}$a)2=R2-($\frac{\sqrt{6}}{3}$a-R)2,得a=$\frac{2\sqrt{6}}{3}$R.
故答案为:$\frac{2\sqrt{6}}{3}$R.

点评 本题考查球的内接几何体,考查勾股定理,考查学生的计算能力,关键就是确定出球心的位置.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.在平面直角坐标系xOy中,满足x2+y2≤1,x≥0,y≥0的点P(x,y)的集合对应的平面图形的面积为$\frac{π}{4}$;类似的,在空间直角坐标系O-xyz中,满足x2+y2+z2≤1,x≥0,y≥0,z≥0的点P(x,y)的集合对应的空间几何体的体积为$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.数列{an}是由1,2,3,…2016的一个排列构成的数列,设任意m个相邻的和构成集合B,即B={x|x=$\sum_{i=1}^{n}$an+i,n=0,1,2,…,2016-m}.
(Ⅰ)若m=8,求B中元素的最大值;
(Ⅱ)下列情况下,集合B能否为单元素集,若能,写出一个对应的数列{an},若不能,说明理由.
①m=8,n=8k,k=0,1,2,…,251;
②m=3,n=3k,k=0,1,2,…,671.
(Ⅲ)对于数列{an},若m=8,记B红元素的最大值为D,试求S的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知A是三角形的一个内角,
(1)若tanA=2,求$\frac{sin(π-A)+cos(-A)}{{sinA-sin(\frac{π}{2}+A)}}$的值.
(2)若sinA+cosA=$\frac{1}{5}$,判断三角形的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.《九章算术》卷5《商功》记载一个问题“今有圆堡瑽,周四丈八尺,高一丈一尺.问积几何?答曰:二千一百一十二尺.术曰:周自相乘,以高乘之,十二而一”.这里所说的圆堡瑽就是圆柱体,它的体积为“周自相乘,以高乘之,十二而一.”就是说:圆堡瑽(圆柱体)的体积为:V=$\frac{1}{12}$×(底面的圆周长的平方×高).则由此可推得圆周率π的取值为(  )
A.3B.3.14C.3.2D.3.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.四棱锥P-ABCD的底面ABCD为正方形,PA⊥底面ABCD,AB=2,若该四棱锥的所有顶点都在体积为$\frac{243π}{16}$同一球面上,则PA=(  )
A.3B.$\frac{7}{2}$C.2$\sqrt{3}$D.$\frac{9}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.5名战士站成一排,其中甲不站在最左边的不同站法的种数为96.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知Rt△ABC的斜边AB=2,则其内切圆的半径r的取值范围是(  )
A.(1,$\sqrt{2}$]B.[1,$\sqrt{2}$]C.(0,$\sqrt{2}$-1]D.[1,$\sqrt{2}$-1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合A=$\{x|{x^2}-x-2<0\},\;B=\{x|\frac{x+2}{x-2}<0\}$,则集合A、B的关系为(  )
A.A⊆BB.B⊆AC.A?BD.B?A

查看答案和解析>>

同步练习册答案