精英家教网 > 高中数学 > 题目详情
2.设命题p:?x∈($\frac{1}{2}$,+∞),x+log2x>0,则¬p是(  )
A.?x∈($\frac{1}{2}$,+∞),使得x+log2x>0B.?x∈($\frac{1}{2}$,+∞),使得x+log2x≤0
C.?x∈($\frac{1}{2}$,+∞),使得x+log2x≤0D.?x∈(-∞,$\frac{1}{2}$],使得x+log2x>0

分析 利用全称命题的否定是特称命题,写出结果即可.

解答 解:因为全称命题的否定是特称命题,所以,命题p:?x∈($\frac{1}{2}$,+∞),x+log2x>0,
则¬p是?x∈($\frac{1}{2}$,+∞),使得x+log2x≤0.
故选:B.

点评 本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.(1)已知cos(π+α)=-$\frac{1}{2}$,α为第一象限角,求cos($\frac{π}{2}$+α)的值.
(2)已知cos($\frac{π}{6}$-α)=$\frac{1}{3}$,求cos($\frac{5π}{6}$+α)•sin($\frac{2π}{3}$-α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知f(x一y)=f(x)-y(2x-y+1),且f(0)=1,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知直线l1:a2x-y+1=0、l2:x+ay-3=0互相垂直,则a的值为(  )
A.0B.1C.0或1D.0或2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设AB是椭圆$\frac{{x}^{2}}{4}$+y2=1的长轴,若把AB100等分,过每个分点作AB的垂线,交椭圆的上半部分于P1,P2,…,P99,F1为椭圆的左焦点,则|F1A|+|F1P1|+…+|F1P99|+|F1B|的值是(  )
A.196B.198C.200D.202

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知x1,x2是函数f(x)=e-x-|lnx|的两个不同零点,则x1x2的取值范围是(  )
A.(0,$\frac{1}{e}$)B.($\frac{1}{e}$,1]C.(1,e)D.($\frac{1}{e}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设数列{an}是首项为1,公比为q(q≠-1)的等比数列,若$\left\{{\frac{1}{{{a_n}+{a_{n+1}}}}}\right\}$是等差数列,则$(\frac{1}{a_2}+\frac{1}{a_3})+(\frac{1}{a_3}+\frac{1}{a_4})+…+(\frac{1}{{{a_{2015}}}}+\frac{1}{{{a_{2016}}}})$=(  )
A.4024B.4026C.4028D.4030

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下面是一个2×2列联表,则表中a、b处的值分别为(  )
y1y2总计
x1a2173
x222527
总计b46100
A.94、96B.52、54C.52、50D.54、52

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=xlnx,且0<x1<x2,给出下列命题:
①$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<1
②x2f(x1)<x1f(x2
③当lnx>-1时,x1f(x1)+x2f(x2)>2x2f(x1
④x1+f(x1)<x2+f(x2
其中正确的命题序号是②③.

查看答案和解析>>

同步练习册答案