分析 由sin∠PF1F2=cos∠PF2F1,可得∠PF1F2+∠PF2F1=90°,因此∠F1PF2=90°,由直线的斜率为$\frac{\sqrt{3}}{3}$,求得∠PF1F2=30°,由直角三角形的性质可知|PF2|=c,|PF2|=$\sqrt{3}$c,再双曲线的定义,求得a和c的关系,利用双曲线的离心率公式即可求得双曲线的离心率.
解答 解:由题意可知:sin∠PF1F2=cos∠PF2F1,
∴∠PF1F2+∠PF2F1=90°,
∴∠F1PF2=90°,
由直线y=$\frac{\sqrt{3}}{3}$(x+c),过双曲线的左焦点,且tan∠PF1F2=$\frac{\sqrt{3}}{3}$,
∴∠PF1F2=30°,
∵|F1F2|=2c
∴|PF2|=c,|PF2|=$\sqrt{3}$c,
∴2a=$\sqrt{3}$c-c
∴e=$\frac{c}{a}$$\frac{c}{\frac{\sqrt{3}c-c}{2}}$=$\frac{2}{\sqrt{3}-1}$=$\sqrt{3}$+1,
故答案为:$\sqrt{3}$+1.![]()
点评 本题考查双曲线的离心率的求法,直角三角形的性质,双曲线的定义,解题时要注意数形结合思想的合理运用,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 左上方 | B. | 左下方 | C. | 右上方 | D. | 右下方 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com