精英家教网 > 高中数学 > 题目详情
7.化简:$\frac{\sqrt{1-2sinαcosα}}{cosα-sinα}$(α在第四象限)=1.

分析 利用同角三角函数基本关系式把根式内部的代数式化为完全平方式,结合α的范围开方得答案.

解答 解:∵α在第四象限,
∴$\frac{\sqrt{1-2sinαcosα}}{cosα-sinα}$=$\frac{\sqrt{(sinα-cosα)^{2}}}{cosα-sinα}$=$\frac{|cosα-sinα|}{cosα-sinα}=\frac{cosα-sinα}{cosα-sinα}=1$.
故答案为:1.

点评 本题考查三角函数的化简求值,考查了同角三角函数基本关系式的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知集合A={x|y=lg(2-x)+lg(2+x)},B={y|y=6x,x>0},则A∩B=(  )
A.{x|-2≤x≤1}B.{x|1<x<2}C.{x|x>2}D.{x|-2<x<1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设函数f(x)=$\frac{1}{1+x}$,g(x)=x2+2,f[g(2)]=$\frac{1}{7}$;f[g(x)]=$\frac{1}{{x}^{2}+3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.从字母a,b,c,d中任意取出两个不同字母的试验中,有哪些基本事件?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.△ABC中,CA=1,CB=2,∠C=60°,则AB=$\sqrt{3}$,∠A=90°,S△ABC=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,焦距为2c,若直线y=$\frac{\sqrt{3}}{3}$(x+c)与双曲线的右支交于点P,且满足sin∠PF1F2=cos∠PF2F1,则双曲线的离心率为$\sqrt{3}$+1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设γ,θ为常数(θ∈(0,$\frac{π}{4}}$),γ∈(${\frac{π}{4}$,$\frac{π}{2}})}$),若sin(α+γ)+sin(γ-β)=sinθ(sinα-sinβ)+cosθ(cosα+cosβ)对一切α,β∈R恒成立,则$\frac{{tanθtanγ+cos({θ-γ})}}{{{{sin}^2}({θ+\frac{π}{4}})}}$=(  )
A.2B.$\sqrt{3}$C.1D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.用二分法求方程x-2lg$\frac{1}{\sqrt{x}}$=3的近似解,可以取的一个区间是(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.集合M={a|$\frac{4}{1-a}$∈Z,a∈N*}用列举法表示为{2,3,5}.

查看答案和解析>>

同步练习册答案