精英家教网 > 高中数学 > 题目详情
19.设γ,θ为常数(θ∈(0,$\frac{π}{4}}$),γ∈(${\frac{π}{4}$,$\frac{π}{2}})}$),若sin(α+γ)+sin(γ-β)=sinθ(sinα-sinβ)+cosθ(cosα+cosβ)对一切α,β∈R恒成立,则$\frac{{tanθtanγ+cos({θ-γ})}}{{{{sin}^2}({θ+\frac{π}{4}})}}$=(  )
A.2B.$\sqrt{3}$C.1D.$\sqrt{2}$

分析 选项结果是固定值,可以利用特殊值验证法,令α,β 分别取0和 $\frac{π}{2}$,再令 α,β 分别取 $\frac{π}{2}$ 和 0,化简可得 tanγ=cotθ,θ+γ=$\frac{π}{2}$,代入要求的式子,化简可得求得结果.

解答 解:令 α=0,β=$\frac{π}{2}$可得   sinγ-cosγ=-sinθ+cosθ  ①,
令 α=$\frac{π}{2}$,β=0 可得   cosγ+sinγ=sinθ+cosθ  ②,
由①②可得 sinγ=cosθ,cosγ=sinθ,∴tanγ=cotθ,θ+γ=$\frac{π}{2}$,
∴$\frac{{tanθtanγ+cos({θ-γ})}}{{{{sin}^2}({θ+\frac{π}{4}})}}$=$\frac{1+2sinθcosθ}{\frac{1-cos(2θ+\frac{π}{2})}{2}}$=$\frac{2(1+sin2θ)}{1+sin2θ}$=2,
故选:A.

点评 本题考查三角函数的恒等变换及化简求值,求出两个角θ和γ之间的关系,即 tanγ=cotθ,θ+γ=$\frac{π}{2}$,是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.“a=1”是“对任意的正数x,$x+\frac{1}{x}≥a$恒成立”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知实数x,y满足$\left\{\begin{array}{l}y≤x-1\\ x≤3\\ x+5y≥4\end{array}\right.$,则$\frac{x}{y}$的最小值是$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.化简:$\frac{\sqrt{1-2sinαcosα}}{cosα-sinα}$(α在第四象限)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\left\{\begin{array}{l}{-2{e}^{x},x≤0}\\{lnx,x>0}\end{array}\right.$(其中e为自然对数的底数),则函数y=f(f(x))的零点等于e.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若函数y=f(x)是y=log2x的反函数,且f(a)+f(b)<4,则点(a,b)必在直线x+y-2=0的(  )
A.左上方B.左下方C.右上方D.右下方

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.(x-1)3+2014(x-1)=1,(y-1)3+2014(y-1)=-1,则x+y的值为(  )
A.2014B.0C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC=$\frac{1}{2}$AD=1,CD=$\sqrt{3}$.
(1)求证:平面MQB⊥平面PAD;
(2)若M是棱PC的中点,求四面体M-PQB的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)=(x-1)ln|x|-1的零点的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案