分析 (1)推导出四边形BCDQ为平行四边形,从而CD∥BQ.又QB⊥AD.从而BQ⊥平面PAD,由此能证明平面PQB⊥平面PAD.
(2)证明BC⊥平面PQB,利用三棱锥的体积公式进行求解即可.
解答 (1)证明:∵AD∥BC,BC=$\frac{1}{2}$AD,Q为AD的中点,
∴四边形BCDQ为平行四边形,∴CD∥BQ.
∵∠ADC=90°,∴∠AQB=90°,即QB⊥AD.
又∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,
∴BQ⊥平面PAD.∵BQ?平面PQB,∴平面PQB⊥平面PAD;
(2)解:PA=PD=2,Q是AD的中点,
∴PQ⊥平面ABCD,
∴PQ⊥BC,
∵DCBQ是矩形,
∴BC⊥QB,
∵PQ∩QB=Q,
∴BC⊥平面PQB,
∴四面体M-PQB的体积=$\frac{1}{3}×\frac{1}{2}×PQ×QB×\frac{1}{2}BC$=$\frac{1}{4}$.
点评 本题考查面面垂直的证明,考查体积的计算,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\sqrt{3}$ | C. | 1 | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,1) | B. | (1,2) | C. | (2,3) | D. | (3,4) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | G=N+,⊕为整数的加法 | B. | G=N,⊕为整数的加法 | ||
| C. | G=Z,⊕为整数的减法 | D. | G={x|x=2n,n∈Z},⊕为整数的乘法 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com