精英家教网 > 高中数学 > 题目详情
18.非空集合G关于运算⊕满足:
(1)对任意a,b∈G,都有a⊕b∈G;
(2)存在c∈G,使得对一切a∈G,都有a⊕c=c⊕a=a,则称G关于运算⊕为“融洽集”.
在下列集合和运算中,G关于运算⊕为“融洽集”的是(  )
A.G=N+,⊕为整数的加法B.G=N,⊕为整数的加法
C.G=Z,⊕为整数的减法D.G={x|x=2n,n∈Z},⊕为整数的乘法

分析 根据题意依次判断各项即可.

解答 解:对于A:任意正数a,b知道:a+b仍为正数,故有a⊕b∈G;但是不存在e∈G,使对一切a∈G都有a⊕e=e⊕a=a,故A的G不是“融洽集.
对于B:根据题意我们可知当a,b都为非负整数时,a,b通过加法运算还是非负整数,且存在一整数0∈G有0+a=a+0=a,所以B为融洽集;
对于C:任意整数a,b知道:a-b仍为整数,故有a⊕b∈G;但是不存在e∈G,使对一切a∈G都有a-e=e-a=a,故C的G不是“融洽集.
对于D:任意偶数a,b知道:ab仍为偶数,故有a⊕b∈G;但是不存在e∈G,使对一切a∈G都有a⊕e=e⊕a=a,故D的G不是“融洽集,不满足存在e∈G,使得对一切a∈G,都有a⊕e=e⊕a=a.
故选B.

点评 本题考查了对题目的理解和存在性的判断.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC=$\frac{1}{2}$AD=1,CD=$\sqrt{3}$.
(1)求证:平面MQB⊥平面PAD;
(2)若M是棱PC的中点,求四面体M-PQB的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)=(x-1)ln|x|-1的零点的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=lnx+ax2-x+1有两个极值点,则实数a的取值范围是(0,$\frac{1}{8}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.4名学生排一排,甲乙站在一起的概率是(  )
A.$\frac{1}{4}$B.$\frac{1}{27}$C.$\frac{1}{18}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若集合A={-2,0,1,3},B={-1,1,3},则A∪B元素的个数为(  )
A.2B.4C.5D.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设函数f(x)=kx2+2x(k为实常数)为奇函数,函数g(x)=af(x)-1(a>0且a≠1).当a=$\sqrt{2}$时,g(x)=t2-2mt+1对所有的x∈[-1,1]及m∈[-1,1]恒成立,则实数t的取值范围(-∞,-2]∪{0}∪[2,+∞)..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.函数f(x)=Asin(ωx+φ)(A>0,ω>0,-π<φ<0,x∈R)的部分图象如图所示.
(I)求函数y=f(x)的解析式;
(II)当x∈[-2π,0]时,求f(x)的最大值、最小值及取得最大值、最小值时相应x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x}+\frac{3}{4},(x≥2)}\\{lo{g}_{2}x,(0<x<2)}\end{array}\right.$,方程f(x)=k恰有两个解,则实数k的取值范围是(  )
A.($\frac{3}{4}$,1)B.[$\frac{3}{4}$,1)C.[$\frac{3}{4}$,1]D.(0,1)

查看答案和解析>>

同步练习册答案