精英家教网 > 高中数学 > 题目详情
9.函数f(x)=(x-1)ln|x|-1的零点的个数为(  )
A.0B.1C.2D.3

分析 由f(x)=0得ln|x|=$\frac{1}{x-1}$,然后分别作出函数y=ln|x|与y=$\frac{1}{x-1}$的图象,利用数形结合即可得到结论.

解答 解:由题意,x≠1,f(x)=(x-1)ln|x|-1=0得ln|x|=$\frac{1}{x-1}$,
设函数y=ln|x|与y=$\frac{1}{x-1}$,分别作出函数y=ln|x|与y=$\frac{1}{x-1}$的图象如图:
由图象可知两个函数的交点个数为3个,
故函数的零点个数为3个,
故选D.

点评 本题主要考查函数零点个数的判断,根据函数和方程之间的关系,转化为两个函数图象的交点个数问题,利用数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.设γ,θ为常数(θ∈(0,$\frac{π}{4}}$),γ∈(${\frac{π}{4}$,$\frac{π}{2}})}$),若sin(α+γ)+sin(γ-β)=sinθ(sinα-sinβ)+cosθ(cosα+cosβ)对一切α,β∈R恒成立,则$\frac{{tanθtanγ+cos({θ-γ})}}{{{{sin}^2}({θ+\frac{π}{4}})}}$=(  )
A.2B.$\sqrt{3}$C.1D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=(x2-1)(x2+ax+b)的图象关于直线x=3对称,则函数f(x)的值域为[-36,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.集合M={a|$\frac{4}{1-a}$∈Z,a∈N*}用列举法表示为{2,3,5}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如果某射手每次射击击中目标的概率为0.74,每次射击的结果相互独立,那么他在10次射击中,最有可能击中目标几次(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.把长为80cm的铁丝随机截成三段,则每段铁丝长度都不小于20cm的概率为$\frac{1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=ax2-$\frac{2}{a}$x+2+b满足对任意的实数x都有f(1-x)=f(1+x),且f(x)的值域为[1,+∞)
(1)求a,b的值;
(2)若g(x)=f(x)-mx在[2,4]上为单调函数,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.非空集合G关于运算⊕满足:
(1)对任意a,b∈G,都有a⊕b∈G;
(2)存在c∈G,使得对一切a∈G,都有a⊕c=c⊕a=a,则称G关于运算⊕为“融洽集”.
在下列集合和运算中,G关于运算⊕为“融洽集”的是(  )
A.G=N+,⊕为整数的加法B.G=N,⊕为整数的加法
C.G=Z,⊕为整数的减法D.G={x|x=2n,n∈Z},⊕为整数的乘法

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知△ABC中,A=30°,C=105°,b=4$\sqrt{2}$,则a等于(  )
A.4$\sqrt{5}$B.4$\sqrt{3}$C.4$\sqrt{2}$D.4

查看答案和解析>>

同步练习册答案