精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=$\left\{\begin{array}{l}{-2{e}^{x},x≤0}\\{lnx,x>0}\end{array}\right.$(其中e为自然对数的底数),则函数y=f(f(x))的零点等于e.

分析 令f(x)=t,y=f(t),通过解方程求零点,即可求出函数y=f(f(x))的零点.

解答 解:函数f(x)=$\left\{\begin{array}{l}{-2{e}^{x},x≤0}\\{lnx,x>0}\end{array}\right.$,
令f(x)=t,y=f(t),
由f(t)=0,可得t=1,
由f(x)=1,可得x=e,
∴函数y=f(f(x))的零点等于e,
故答案为:e.

点评 本题考查函数的零点,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.将300°化为弧度数为(  )
A.$\frac{5π}{6}$B.$\frac{11π}{6}$C.$-\frac{π}{6}$D.$\frac{5π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若离散型随机变量X的分布列为
X01
P6a2-a3-7a
则常数a的值为(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{2}{3}$或$\frac{1}{3}$D.1或$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.△ABC中,CA=1,CB=2,∠C=60°,则AB=$\sqrt{3}$,∠A=90°,S△ABC=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设a,b∈R,且a+b=4,则3a+3b的最小值为(  )
A.6B.18C.27D.81

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设γ,θ为常数(θ∈(0,$\frac{π}{4}}$),γ∈(${\frac{π}{4}$,$\frac{π}{2}})}$),若sin(α+γ)+sin(γ-β)=sinθ(sinα-sinβ)+cosθ(cosα+cosβ)对一切α,β∈R恒成立,则$\frac{{tanθtanγ+cos({θ-γ})}}{{{{sin}^2}({θ+\frac{π}{4}})}}$=(  )
A.2B.$\sqrt{3}$C.1D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知sin(2x+$\frac{π}{5}$)=$\frac{{\sqrt{3}}}{3}$,则sin($\frac{4π}{5}$-2x)+sin2($\frac{3π}{10}$-2x)=$\frac{2+\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.直线x+y+3=0与直线x-2y+3=0的交点坐标为(  )
A.(-3,0)B.(-2,-3)C.(0,1)D.(-1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如果某射手每次射击击中目标的概率为0.74,每次射击的结果相互独立,那么他在10次射击中,最有可能击中目标几次(  )
A.6B.7C.8D.9

查看答案和解析>>

同步练习册答案