精英家教网 > 高中数学 > 题目详情

【题目】为响应市政府提出的以新旧动能转换为主题的发展战略,某公司花费100万元成本购买了1套新设备用于扩大生产,预计该设备每年收入100万元,第一年该设备的各种消耗成本为8万元,且从第二年开始每年比上一年消耗成本增加8万元.

1)求该设备使用x年的总利润y(万元)与使用年数xxN*)的函数关系式(总利润=总收入﹣总成本);

2)这套设备使用多少年,可使年平均利润最大?并求出年平均利润的最大值.

【答案】(1);(2)这套设备使用5年,可使年平均利润最大,最大利润为56万元

【解析】

(1)求出年的总收入及消耗等总费用,可得总利润与使用年数的函数关系;
(2)年平均利润为,然后利用基本不等式求最值.

1)由题意知,x年总收入为100x万元,

x年消耗成本总费用为81+2+3+…+x)=4x1+x)万元,

∴总利润y100x4xx+1)﹣100xN*,即y=﹣4x2+96x100xN*

2)年平均利润为,∵x0

4x+9656

当且仅当x,即x5时取号.

∴当设备使用5年时,年平均利润最大.

答:这套设备使用5年,可使年平均利润最大,最大利润为56万元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱中,的中点,的中点.

1)求异面直线所成角的大小;

2)若直三棱柱的体积为,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为FF关于原点的对称点为P,过F轴的垂线交抛物线于MN两点,给出下列三个结论:

必为直角三角形;

②直线必与抛物线相切;

的面积为.其中正确的结论是___

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法错误的是( )

A. 若直线平面,直线平面,则直线不一定平行于直线

B. 若平面不垂直于平面,则内一定不存在直线垂直于平面

C. 若平面平面,则内一定不存在直线平行于平面

D. 若平面平面,平面平面,则一定垂直于平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面四边形中(图1),的中点,,且,现将此平面四边形沿折起,使得二面角为直二面角,得到一个多面体,为平面内一点,且为正方形(图2),分别为的中点.

1)求证:平面//平面

2)在线段上是否存在一点,使得平面与平面所成二面角的余弦值为?若存在,求出线段的长,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆过点,且它的焦距是短轴长的.

1)求椭圆的方程.

2)若是椭圆上的两个动点(两点不关于轴对称),为坐标原点,的斜率分别为,问是否存在非零常数,使当时,的面积为定值?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学家祖暅提出原理:“幂势既同,则积不容异”.其中“幂”是截面积,“势”是几何体的高.该原理的意思是:夹在两个平行平面间的两个几何体,被任一平行于这两个平行平面的平面所截,若所截的两个截面的面积恒相等,则这两个几何体的体积相等.如图,在空间直角坐标系中的平面内,若函数的图象与轴围成一个封闭的区域,将区域沿轴的正方向平移8个单位长度,得到几何体如图一,现有一个与之等高的圆柱如图二,其底面积与区域的面积相等,则此圆柱的体积为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列的前n项和为,公差为

,求数列的通项公式;

是否存在dn使成立?若存在,试找出所有满足条件的dn的值,并求出数列的通项公式;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求的单调区间;

(2)若上成立,求的取值范围.

查看答案和解析>>

同步练习册答案