精英家教网 > 高中数学 > 题目详情

 已知O为坐标原点,F为椭圆在y轴正半轴上的焦点,过F且斜率为的直线与C交与A、B两点,点P满足

(Ⅰ)证明:点P在C上;

(Ⅱ)设点P关于点O的对称点为Q,证明:A、P、B、Q四点在同一圆上.

 

 

 

 

【答案】

 

【思路点拨】方程联立利用韦达定理是解决这类问题的基本思路,注意把用坐标表示后求出P点的坐标,然后再结合直线方程把P点的纵坐标也用A、B两点的横坐标表示出来。从而求出点P的坐标代入椭圆方程验证即可证明点P在C上。(II)此问题证明有两种思路:思路一:关键是证明互补.通过证明这两个角的正切值互补即可,再求正切值时要注意利用倒角公式。

思路二:根据圆的几何性质圆心一定在弦的垂直平分线上,所以根据两条弦的垂直平分线的交点找出圆心N,然后证明N到四个点A、B、P、Q的距离相等即可.

【精讲精析】 (I)设

直线,与联立得

,

所以点P在C上。

(II)法一:

同理

 

所以互补,

因此A、P、B、Q四点在同一圆上。

法二:由和题设知,,PQ的垂直平分线的方程为…①

设AB的中点为M,则,AB的垂直平分线的方程为…②

由①②得的交点为

,

,,

.

所以A、P、B、Q四点在同一圆圆N上.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知O为坐标原点,F为椭圆C:x2+
y2
2
=1
在y轴正半轴上的焦点,过F且斜率为-
2
的直线l与C交于A、B两点,点P满足
OA
+
OB
+
OP
=
0

(Ⅰ)证明:点P在C上;
(Ⅱ)设点P关于点O的对称点为Q,证明:A、P、B、Q四点在同一圆上.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O为坐标原点,F为抛物线y2=4x的焦点,A是抛物线上一点,若
OA
AF
=-4,则点A的坐标是
(1,2)或(1,-2)
(1,2)或(1,-2)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知O为坐标原点,F为抛物线y2=4x的焦点,A是抛物线上一点,若
OA
AF
=-4,则点A的坐标是______.

查看答案和解析>>

科目:高中数学 来源:《2.3 抛物线》2013年同步练习2(解析版) 题型:填空题

已知O为坐标原点,F为抛物线y2=4x的焦点,A是抛物线上一点,若=-4,则点A的坐标是   

查看答案和解析>>

科目:高中数学 来源:高考真题 题型:解答题

已知O为坐标原点,F为椭圆C:在y轴正半轴上的焦点,过F且斜率为的直线l与C交于A、B两点,点P满足
(1)证明:点P在C上;
(Ⅱ)设点P关于点O的对称点为Q,证明:A、P、B、Q四点在同一圆上。

查看答案和解析>>

同步练习册答案