ÒÑÖªº¯Êýf£¨x£©µÄ¶¨ÒåÓòΪR£¬ÇÒ¶ÔÓÚÈÎÒâx¡ÊR£¬¶¼ÓÐf£¨x£©=f£¨-x£©¼°f£¨x+4£©=f£¨x£©+f£¨2£©³ÉÁ¢£®µ±x1¡¢x2¡Ê[0£¬2]ÇÒx1¡Ùx2ʱ£¬¶¼ÓÐ[f£¨x1£©-f£¨x2£©]£¨x1-x2£©£¾0³ÉÁ¢£®ÏÖ¸ø³öÏÂÁÐËĸö½áÂÛ£º
¢Ùf£¨2£©=0£»

¢Úº¯Êýf£¨x£©ÔÚÇø¼ä[-6£¬-4]ÉÏΪÔöº¯Êý£»

¢ÛÖ±Ïßx=-4ÊǺ¯Êýf£¨x£©µÄÒ»Ìõ¶Ô³ÆÖ᣻

¢Ü·½³Ìf£¨x£©=0ÔÚÇø¼ä[-6£¬6]ÉÏÓÐ4¸ö²»Í¬µÄʵ¸ù£®
ÆäÖÐÕýÈ·ÃüÌâµÄÐòºÅÊÇ______£®

½â£º¡ßº¯Êýf£¨x£©µÄ¶¨ÒåÓòΪR£¬
ÓÖ¡ß¶ÔÓÚÈÎÒâx¡ÊR£¬¶¼ÓÐf£¨x£©=f£¨-x£©£¬
¡àº¯Êýf£¨x£©ÎªÅ¼º¯Êý£¬
ÓÖ¡ßµ±x1¡¢x2¡Ê[0£¬2]ÇÒx1¡Ùx2ʱ£¬
¶¼ÓÐ[f£¨x1£©-f£¨x2£©]£¨x1-x2£©£¾0³ÉÁ¢£®
¡àº¯Êýf£¨x£©ÔÚÇø¼ä[0£¬2]ÉÏΪÔöº¯Êý£¬
ÓÖ¡ßf£¨x+4£©=f£¨x£©+f£¨2£©£¬
¡àº¯ÊýÊÇT=4µÄÖÜÆÚº¯Êý£¬
Ôòº¯Êý²ÝͼÈçÏÂͼËùʾ£º
ÓÉͼÒ׵ãºf£¨2£©=0£¬¹Ê¢ÙÕýÈ·£»
º¯Êýf£¨x£©ÔÚÇø¼ä[-6£¬-4]ÉÏΪ¼õº¯Êý£¬¹Ê¢Ú´íÎó£»
Ö±Ïßx=-4ÊǺ¯Êýf£¨x£©µÄÒ»Ìõ¶Ô³ÆÖᣬ¹Ê¢ÛÕýÈ·
·½³Ìf£¨x£©=0ÔÚÇø¼ä[-6£¬6]ÉÏÓÐ-6£¬-2£¬2£¬6¹²4¸ö²»Í¬µÄʵ¸ù£®¹Ê¢ÜÕýÈ·
¹Ê´ð°¸Îª£º¢Ù¢Û¢Ü
·ÖÎö£ºÓɺ¯Êýf£¨x£©µÄ¶¨ÒåÓòΪR£¬ÇÒ¶ÔÓÚÈÎÒâx¡ÊR£¬¶¼ÓÐf£¨x£©=f£¨-x£©£¬Ò׵ú¯Êýf£¨x£©ÎªÅ¼º¯Êý£¬ÓÖÓɵ±x1¡¢x2¡Ê[0£¬2]ÇÒx1¡Ùx2ʱ£¬¶¼ÓÐ[f£¨x1£©-f£¨x2£©]£¨x1-x2£©£¾0³ÉÁ¢£®Ôòº¯Êýf£¨x£©ÔÚÇø¼ä[0£¬2]ÉÏΪÔöº¯Êý£¬ÓÖÓÉf£¨x+4£©=f£¨x£©+f£¨2£©£¬Ò׵ú¯ÊýÊÇT=4µÄÖÜÆÚº¯Êý£¬È»ºó¶ÔËĸö½áÂÛÖðÒ»½øÐÐÅжϣ¬¼´¿ÉµÃµ½´ð°¸£®
µãÆÀ£ºµ±Óöµ½º¯Êý×ÛºÏÓ¦ÓÃʱ£¬´¦ÀíµÄ²½ÖèÒ»°ãΪ£º¢Ù¸ù¾Ý¡°ÈýâÎöʽÓÐÒâÒ塱µÄÔ­Ôò£¬ÏÈÈ·¶¨º¯ÊýµÄ¶¨ÒåÓò£»¢ÚÔÙ»¯¼ò½âÎöʽ£¬Çóº¯Êý½âÎöʽµÄ×î¼òÐÎʽ£¬²¢·ÖÎö½âÎöʽÓëÄĸö»ù±¾º¯Êý±È½ÏÏàËÆ£»¢Û¸ù¾Ý¶¨ÒåÓòºÍ½âÎöʽ»­³öº¯ÊýµÄͼÏó¢Ü¸ù¾ÝͼÏó·ÖÎöº¯ÊýµÄÐÔÖÊ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=log3
3
x
1-x
£¬M(x1£¬y1)£¬N(x2£¬y2)
ÊÇf£¨x£©Í¼ÏóÉϵÄÁ½µã£¬ºá×ø±êΪ
1
2
µÄµãPÂú×ã2
OP
=
OM
+
ON
£¨OÎª×ø±êÔ­µã£©£®
£¨¢ñ£©ÇóÖ¤£ºy1+y2Ϊ¶¨Öµ£»
£¨¢ò£©ÈôSn=f(
1
n
)+f(
2
n
)+¡­+f(
n-1
n
)
£¬ÆäÖÐn¡ÊN*£¬ÇÒn¡Ý2£¬ÇóSn£»
£¨¢ó£©ÒÑÖªan=
1
6
£¬                          n=1
1
4(Sn+1)(Sn+1+1)
£¬n¡Ý2
£¬ÆäÖÐn¡ÊN*£¬TnΪÊýÁÐ{an}µÄǰnÏîºÍ£¬ÈôTn£¼m£¨Sn+1+1£©¶ÔÒ»ÇÐn¡ÊN*¶¼³ÉÁ¢£¬ÊÔÇómµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÏÂÁÐ˵·¨ÕýÈ·µÄÓУ¨¡¡¡¡£©¸ö£®
¢ÙÒÑÖªº¯Êýf£¨x£©ÔÚ£¨a£¬b£©Äڿɵ¼£¬Èôf£¨x£©ÔÚ£¨a£¬b£©ÄÚµ¥µ÷µÝÔö£¬Ôò¶ÔÈÎÒâµÄ?x¡Ê£¨a£¬b£©£¬ÓÐf¡ä£¨x£©£¾0£®
¢Úº¯Êýf£¨x£©Í¼ÏóÔÚµãP´¦µÄÇÐÏß´æÔÚ£¬Ôòº¯Êýf£¨x£©ÔÚµãP´¦µÄµ¼Êý´æÔÚ£»·´Ö®Èôº¯Êýf£¨x£©ÔÚµãP´¦µÄµ¼Êý´æÔÚ£¬Ôòº¯Êýf£¨x£©Í¼ÏóÔÚµãP´¦µÄÇÐÏß´æÔÚ£®
¢ÛÒòΪ3£¾2£¬ËùÒÔ3+i£¾2+i£¬ÆäÖÐiΪÐéÊýµ¥Î»£®
¢Ü¶¨»ý·Ö¶¨Òå¿ÉÒÔ·ÖΪ£º·Ö¸î¡¢½üËÆ´úÌæ¡¢ÇóºÍ¡¢È¡¼«ÏÞËIJ½£¬¶ÔÇóºÍIn=
n
i=1
f(¦Îi)¡÷x
ÖЦÎiµÄѡȡÊÇÈÎÒâµÄ£¬ÇÒIn½öÓÚnÓйأ®
¢ÝÒÑÖª2i-3ÊÇ·½³Ì2x2+px+q=0µÄÒ»¸ö¸ù£¬ÔòʵÊýp£¬qµÄÖµ·Ö±ðÊÇ12£¬26£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=sin£¨2x-
¦Ð
6
£©£¬g£¨x£©=sin£¨2x+
¦Ð
3
£©£¬Ö±Ïßy=mÓëÁ½¸öÏàÁÚº¯ÊýµÄ½»µãΪA£¬B£¬Èôm±ä»¯Ê±£¬ABµÄ³¤¶ÈÊÇÒ»¸ö¶¨Öµ£¬ÔòABµÄÖµÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨¢ñ£©ÒÑÖªº¯Êýf£¨x£©=x3-x£¬ÆäͼÏó¼ÇΪÇúÏßC£®
£¨i£©Çóº¯Êýf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨ii£©Ö¤Ã÷£ºÈô¶ÔÓÚÈÎÒâ·ÇÁãʵÊýx1£¬ÇúÏßCÓëÆäÔÚµãP1£¨x1£¬f£¨x1£©£©´¦µÄÇÐÏß½»ÓÚÁíÒ»µãP2£¨x2£¬f£¨x2£©£©£¬ÇúÏßCÓëÆäÔÚµãP2£¨x2£¬f£¨x2£©£©´¦µÄÇÐÏß½»ÓÚÁíÒ»µãP3£¨x3£¬f£¨x3£©£©£¬Ïß¶ÎP1P2£¬P2P3ÓëÇúÏßCËùΧ³É·â±ÕͼÐεÄÃæ»ý¼ÇΪS1£¬S2£®Ôò
S1S2
Ϊ¶¨Öµ£»
£¨¢ò£©¶ÔÓÚÒ»°ãµÄÈý´Îº¯Êýg£¨x£©=ax3+bx2+cx+d£¨a¡Ù0£©£¬Çë¸ø³öÀàËÆÓÚ£¨¢ñ£©£¨ii£©µÄÕýÈ·ÃüÌ⣬²¢ÓèÒÔÖ¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=x3-ax+b´æÔÚ¼«Öµµã£®
£¨1£©ÇóaµÄȡֵ·¶Î§£»
£¨2£©¹ýÇúÏßy=f£¨x£©ÍâµÄµãP£¨1£¬0£©×÷ÇúÏßy=f£¨x£©µÄÇÐÏߣ¬Ëù×÷ÇÐÏßÇ¡ÓÐÁ½Ìõ£¬Çеã·Ö±ðΪA¡¢B£®
£¨¢¡£©Ö¤Ã÷£ºa=b£»
£¨¢¢£©ÇëÎÊ¡÷PABµÄÃæ»ýÊÇ·ñΪ¶¨Öµ£¿ÈôÊÇ£¬Çó´Ë¶¨Öµ£»Èô²»ÊÇÇó³öÃæ»ýµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸