精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)= ,曲线f(x)= 在点(e,f(e))处的切线与直线e2x﹣y+e=0垂直.(注:e为自然对数的底数) (Ⅰ)若函数f(x)在区间(m,m+1)上存在极值,求实数m的取值范围;
(Ⅱ)求证:当x>1时,

【答案】解:(Ⅰ) 因为f(x)= ,所以f′(x)= ,(1分) 又据题意,得f′(e)=﹣ ,所以﹣ =﹣ ,所以a=1.
所以f(x)= ,所以f′(x)=﹣ (x>0).
当x∈(0,1)时,f′(x)>0,f(x)为增函数;
当x∈(1,+∞)时,f′(x)>0,f(x)为减函数.
所以函数f(x)仅当x=1时,取得极值.
又函数f(x)在区间(m,m+1)上存在极值,
所以m<1<m+1,所以0<m<1.
故实数m的取值范围是(0,1).
(Ⅱ)证明:当x>1时, ,即为 >>
令g(x)= ,则g′(x)=
再令φ(x)=x﹣ln x,则φ′(x)=1﹣ =
又因为x>1,所以φ′(x)>0.所以φ(x)在(1,+∞)上是增函数.
又因为φ(1)=1.所以当x>1时,g′(x)>0.所以g(x)在区间(1,+∞)上是增函数.
所以当x>1时,g(x)>g(1),又g(1)=2,故
令h(x)= ,则h′(x)=
因为x>1,所以 <0.所以当x>1时,h′(x)<0.
故函数h(x)在区间(1,+∞)上是减函数.又h(1)=
所以当x>1时,h(x)< ,所以 >h(x),即
【解析】(Ⅰ)求出函数的导数,求出a的值,解关于导函数的不等式,求出函数的单调区间,求出m的范围即可;(Ⅱ)问题转化为 ,令g(x)= ,令h(x)= ,根据函数的单调性证明即可.
【考点精析】利用函数的极值与导数对题目进行判断即可得到答案,需要熟知求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知多面体均垂直于平面

(1)证明:⊥平面

(2)求直线与平面所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三角形ABC和梯形ACEF所在的平面互相垂直,AB⊥BC,AF⊥AC,AF 2CE,G是线段BF上一点,AB=AF=BC=2.

(1)当GB=GF时,求证:EG∥平面ABC;
(2)求二面角E﹣BF﹣A的余弦值;
(3)是否存在点G满足BF⊥平面AEG?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=,PA⊥PD,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AB=BC=1,O为AD中点.

(1)求B点到平面PCD的距离;

(2)线段PD上是否存在一点Q,使得二面角Q-AC-D的余弦值为?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面上,我们如果用一条直线去截正方形的一个角,那么截下的一个直角三角形,按图所标边长,由勾股定理有:c2a2b2。设想正方形换成正方体,把截线换成如下图的截面,这时从正方体上截下三条侧棱两两垂直的三棱锥OLMN,如果用S1S2S3表示三个侧面面积,S4表示截面面积,那么你类比得到的结论是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是菱形,平面,点分别为中点.

(1)求证:直线平面

(2)求证:

(3)求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足a1=2,an1=3an+2,

(1)证明:是等比数列,并求的通项公式;

(2)证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线l的参数方程为 ( t为参数).以原点为极点,x轴正半轴为极轴 建立极坐标系,圆C的方程为 ρ=2 sinθ.
(1)写出直线l的普通方程和圆C的直角坐标方程;
(2)若点P的直角坐标为(1,0),圆C与直线l交于A,B两点,求|PA|+|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)求与双曲线有相同的焦点且过点的双曲线标准方程;

(2)求焦点在直线上的抛物线的标准方程.

查看答案和解析>>

同步练习册答案