精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,曲线的参数方程为为参数),曲线的直角坐标方程为.

1)求的极坐标方程;

2)在以为极点,轴的正半轴为极轴的极坐标系中,射线的异于极点的交点为,与的异于极点的交点为,求.

【答案】1.2

【解析】

1)将的参数方程化为直角方程,在根据极坐标与直角坐标的互化公式,即可求得极坐标方程,将的直角方程,根据极坐标与直角坐标的互化公式,即可求得极坐标方程,即可求得答案;

2)射线的异于极点的交点为,与的异于极点的交点为,由(1)得:的极坐标方程:极坐标方程为:,求得,即可求得的值.

1的参数方程为为参数),

可得:

故:

即:直角方程为

整理可得:

根据极坐标与直角坐标的互化公式:

的极坐标方程:

的直角坐标方程为:

根据极坐标与直角坐标的互化公式,可得极坐标方程为:

2射线的异于极点的交点为,与的异于极点的交点为

由(1)得:的极坐标方程:极坐标方程为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】我国古代有着辉煌的数学研究成果,其中的《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》、《缉古算经》,有丰富多彩的内容,是了解我国古代数学的重要文献,这5部专著中有3部产生于汉、魏、晋、南北朝时期,某中学拟从这5部专著中选择2部作为“数学文化”校本课程学习内容,则所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点的序列,其中.是线段的中点,是线段的中点,……,是线段的中点,…)

1)写出之间的关系

2)设,计算,由此推测数列的通项公式,并且加以证明;

3)求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知如图1直角梯形的中点,沿将梯形折起(如图2),使平面平面.

1)证明平面

2)在线段上是否存在点,使得平面与平面所成的锐二面角的余弦值为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在矩形中,的中点,将沿折起,则在翻折过程中,异面直线所成角的取值范围是____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年末,武汉出现新型冠状病毒(肺炎疫情,并快速席卷我国其他地区,传播速度很快.因这种病毒是以前从未在人体中发现的冠状病毒新毒株,目前没有特异治疗方法.防控难度很大.武汉市出现疫情最早,感染人员最多,防控压力最大,武汉市从27日起举全市之力入户上门排查确诊的新冠肺炎患者、疑似的新冠肺炎患者、无法明确排除新冠肺炎的发热患者和确诊患者的密切接触者等“四类”人员,强化网格化管理,不落一户、不漏一人.在排查期间,某社区将本社区的排查工作人员分为两个小组,排查工作期间社区随机抽取了100户已排查户,进行了对排查工作态度是否满意的电话调查,根据调查结果统计后,得到如下的列联表.

是否满意

组别

不满意

满意

合计

16

34

50

2

45

50

合计

21

79

100

1)分别估计社区居民对组、组两个排查组的工作态度满意的概率;

2)根据列联表的数据,能否有的把握认为“对社区排查工作态度满意”与“排查工作组别”有关?

附表:

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,求:

(1)函数的图象在点(0,-2)处的切线方程;

(2)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人做下面的游戏:有一个由两个同轴圆柱组成的有盖容器,如图,里面的实心圆柱底面半径为,外面的圆柱面的底面半径为容器的高为。在容器内放入个半径为且质地相同的小球,其中红、黄、蓝色各个,随意翻动容器,然后将容器直立在桌面上。当小球全部停止后,如果有两个颜色相同的小球相邻,则甲胜,否则乙胜。那么,甲胜的概率为()。

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求的极值;

2)若时,的单调性相同,求的取值范围;

3)当时,函数有最小值,记的最小值为,证明:.

查看答案和解析>>

同步练习册答案