精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1)求的极值;

2)若时,的单调性相同,求的取值范围;

3)当时,函数有最小值,记的最小值为,证明:.

【答案】(1) 极小值,无极大值. (2) (3)证明见解析

【解析】

1)通过导函数大于零和小于零的解得函数单调区间,求出极值;

2)由(1)知,单调递增,则恒成立,转化成不等式恒成立求参数范围;

3时,有最小值,则的最小值是这个区间上的极小值,隐含着的根,结合根的存在性定理确定的范围,利用隐零点关系转化,即可求证.

解:(1的定义域为

时,;当时,

所以单调递减,在单调递增.

所以有极小值,无极大值.

2)由(1)知,单调递增.

单调递增,即恒成立,

恒成立,

所以当时,;当时,

所以单调递增,在单调递减,

时,,所以

.

3

,∴

单调递增,

∴存在唯一的,使得

,即

时,单调递减,

时,单调递增,

,则恒成立,

上单调递减,

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),曲线的直角坐标方程为.

1)求的极坐标方程;

2)在以为极点,轴的正半轴为极轴的极坐标系中,射线的异于极点的交点为,与的异于极点的交点为,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,上顶点为,直线的斜率为,且原点到直线的距离为.

(1)求椭圆的标准方程;

(2)若不经过点的直线与椭圆交于两点,且与圆相切.试探究的周长是否为定值,若是,求出定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在梯形中,,平面平面,四边形是菱形,.

(1)求证:

(2)求二面角的平面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C的焦点坐标为,点,过点P作直线l交抛物线CAB两点,过AB分别作抛物线C的切线,两切线交于点Q,则面积的最小值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C的焦点坐标为,点,过点P作直线l交抛物线CAB两点,过AB分别作抛物线C的切线,两切线交于点Q,且两切线分别交x轴于MN两点,则面积的最小值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】通过随机询问名不同性别的大学生是否爱好某项运动,得到如下的列联表:

爱好

40

20

不爱好

20

30

算得

参照附表,以下不正确的有(

附表:

0.050

0.010

0.001

3.841

6.635

10.828

A.在犯错误的概率不超过的前提下,认为爱好该项运动与性别有关

B.在犯错误的概率不超过的前提下,认为爱好该项运动与性别无关

C.以上的把握认为爱好该项运动与性别有关

D.以上的把握认为爱好该项运动与性别无关

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求在图所示的的方格中“圈”的个数.在这里,一条封闭的折线叫做圈,如果这条折线的边均由方格的边组成,且折线经过的任意一个方格顶点都只与折线的两条边相连.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数),直线与直线平行,且过坐标原点,圆的参数方程为为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系.

(1)求直线和圆的极坐标方程;

(2)设直线和圆相交于点两点,求的周长.

查看答案和解析>>

同步练习册答案