精英家教网 > 高中数学 > 题目详情

【题目】已知点的序列,其中.是线段的中点,是线段的中点,……,是线段的中点,…)

1)写出之间的关系

2)设,计算,由此推测数列的通项公式,并且加以证明;

3)求.

【答案】1;(2,证明见解析;(3.

【解析】

1)根据中点坐标公式,求得之间的关系.

2)根据,猜想,然后利用数学归纳法进行证明.

3)由(2)利用累加法求得的表达式并根据等比数列前项和公式求和,进而求得.

1)依题意,点的序列,其中.是线段的中点,是线段的中点,……,是线段的中点,…).由中点坐标公式得:.

2.

猜想,.

用数学归纳法证明:

①当时,,等式成立.

②假设当时等式成立,即

那么当时,

.

所以当时等式也成立,根据①和②,对,等式都成立.

3)由,得

,…,.

由于,以上各式相加,得.

是以为公比的等比数列,.

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】1)若等比数列的前n项和为,求实数a的值;

2)对于非常数数列有下面的结论:若数列为等比数列,则该数列的前n项和为为常数).写出它的逆命题并判断真假,请说明理由;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20202月,全国掀起了“停课不停学”的热潮,各地教师通过网络直播、微课推送等多种方式来指导学生线上学习.为了调查学生对网络课程的热爱程度,研究人员随机调查了相同数量的男、女学生,发现有的男生喜欢网络课程,有的女生不喜欢网络课程,且有的把握但没有的把握认为是否喜欢网络课程与性别有关,则被调查的男、女学生总数量可能为(

附:,其中.

k

A.130B.190C.240D.250

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率是椭圆上一点.

1)求椭圆的方程;

2)若直线的斜率为,且直线交椭圆两点,点关于原点的对称点为,点是椭圆上一点,判断直线的斜率之和是否为定值,如果是,请求出此定值,如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数).是曲线上的动点,将线段点顺时针旋转得到线段,设点的轨迹为曲线.以坐标原点为极点,轴正半轴为极轴建立极坐标系.

(I)求曲线的极坐标方程;

(II)在(I)的条件下,若射线与曲线分别交于两点(除极点外),且有定点,求面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】把分别写有12345的五张卡片全部分给甲、乙、丙三个人,每人至少一张,且若分得的卡片超过一张,则必须是连号,那么不同的分法种数为______用数字作答

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个工厂在某年连续10个月每月产品的总成本y(万元)与该月产量x(万件)之间有如下一组数据:

x

1.08

1.12

1.19

1.28

1.36

1.48

1.59

1.68

1.80

1.87

y

2.25

2.37

2.40

2.55

2.64

2.75

2.92

3.03

3.14

3.26

(1)通过画散点图,发现可用线性回归模型拟合y与x的关系,请用相关系数加以说明;

(2)①建立月总成本y与月产量x之间的回归方程;

②通过建立的y关于x的回归方程,估计某月产量为1.98万件时,此时产品的总成本为多少万元?

(均精确到0.001)

附注:①参考数据:

②参考公式:相关系数

回归方程中斜率和截距的最小二乘估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),曲线的直角坐标方程为.

1)求的极坐标方程;

2)在以为极点,轴的正半轴为极轴的极坐标系中,射线的异于极点的交点为,与的异于极点的交点为,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,上顶点为,直线的斜率为,且原点到直线的距离为.

(1)求椭圆的标准方程;

(2)若不经过点的直线与椭圆交于两点,且与圆相切.试探究的周长是否为定值,若是,求出定值;若不是,请说明理由.

查看答案和解析>>

同步练习册答案