【题目】如图,在平面四边形
中,
和
都是等腰直角三角形且
,正方形
的边
.
(1)求证:
平面
;
(2)求二面角
的余弦值.
![]()
【答案】(1)证明见解析;(2)
.
【解析】试题分析:
(1)由线面垂直的判断定理可得
平面
则
由平面几何知识可得
,据此有
平面
.
(2)由题意可知AD,AB,AE两两垂直.建立空间直角坐标系,设AB=1,据此可得平面BDF的一个法向量为
,取平面ABD的一个法向量为
,则二面角
的余弦值为
.
试题解析:
(1)正方形
中,![]()
又
且
,所以![]()
又![]()
因为
和
都是等腰直角三角形,
所以
,
即
,且
,
所以
.
(2)因为△ABE是等腰直角三角形,所以
,
又因为
,所以
,
即AD,AB,AE两两垂直.建立如图所示空间直角坐标系,
![]()
设AB=1,则AE=1,
,
,
设平面BDF的一个法向量为
,
可得
,
取平面ABD的一个法向量为
,
则
,
故二面角
的余弦值为
.
科目:高中数学 来源: 题型:
【题目】“微信运动”已成为当下热门的健身方式,小王的微信朋友圈内也有大量好友参与了“微信运动”,他随机选取了其中的
人(男、女各
人),记录了他们某一天的走路步数,并将数据整理如下:
步量 性别 | 0~2000 | 2001~5000 | 5001~8000 | 8001~10000 | >10000 |
男 | 1 | 2 | 3 | 6 | 8 |
女 | 0 | 2 | 10 | 6 | 2 |
(1)已知某人一天的走路步数超过
步被系统评定“积极型”,否则为“懈怠型”,根据题意完成下面的
列联表,并据此判断能否有
以上的把握认为“评定类型”与“性别”有关?
积极型 | 懈怠型 | 总计 | |
男 | |||
女 | |||
总计 |
附:
,
| 0.10 | 0.05 | 0.025 | 0.010 |
| 2.706 | 3.841 | 5.024 | 6.635 |
(2)若小王以这
位好友该日走路步数的频率分布来估计其所有微信好友每日走路步数的概率分布,现从小王的所有微信好友中任选
人,其中每日走路不超过
步的有
人,超过
步的有
人,设
,求
的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下面类比推理:
①“若2a<2b,则a<b”类比推出“若a2<b2,则a<b”;
②“(a+b)c=ac+bc(c≠0)”类比推出“
(c≠0)”;
③“a,b∈R,若a-b=0,则a=b”类比推出“a,b∈C,若a-b=0,则a=b”;
④“a,b∈R,若a-b>0,则a>b”类比推出“a,b∈C,若a-b>0,则a>b(C为复数集)”.
其中结论正确的个数为( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以“你我中国梦,全民建小康”为主题“社会主义核心价值观”为主线,为了解
、
两个地区的观众对2018年韩国平昌冬奥会准备工作的满意程度,对
、
地区的
名观众进行统计,统计结果如下:
非常满意 | 满意 | 合计 | |
|
|
| |
|
|
| |
合计 |
在被调查的全体观众中随机抽取
名“非常满意”的人是
地区的概率为
,且
.
(1)现从
名观众中用分层抽样的方法抽取
名进行问卷调查,则应抽取“满意”的
、
地区的人数各是多少?
(2)在(1)抽取的“满意”的观众中,随机选出
人进行座谈,求至少有两名是
地区观众的概率?
(3)完成上述表格,并根据表格判断是否有
的把握认为观众的满意程度与所在地区有关系?
附:
|
|
|
|
|
|
|
|
,![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年9月24日,阿贝尔奖和菲尔兹奖双料得主、英国著名数学家阿蒂亚爵士宣布自己证明了黎曼猜想,这一事件引起了数学届的震动。在1859年的时候,德国数学家黎曼向科学院提交了题目为《论小于某值的素数个数》的论文并提出了一个命题,也就是著名的黎曼猜想。在此之前,著名数学家欧拉也曾研究过这个问题,并得到小于数字
的素数个数大约可以表示为
的结论。若根据欧拉得出的结论,估计1000以内的素数的个数为_________(素数即质数,
,计算结果取整数)
A. 768 B. 144 C. 767 D. 145
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,点
在椭圆
:
上.若点
,
,且
.
(1)求椭圆
的离心率;
(2)设椭圆
的焦距为4,
,
是椭圆
上不同的两点,线段
的垂直平分线为直线
,且直线
不与
轴重合.
①若点
,直线
过点
,求直线
的方程;
② 若直线
过点
,且与
轴的交点为
,求
点横坐标的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量y(千辆/小时)与汽车的平均速度v(千米/小时)之间的函数关系为:
(
).
(1)在该时段内,当汽车的平均速度为多少时,车流量最大?最大车流量为多少?(保留分数形式)
(2)若要求在该时段内车流量超过10千辆/小时,则汽车的平均速度应在什么范用内?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,点
为某沿海城市的高速公路出入口,直线
为海岸线,
,
,
是以
为圆心,半径为
的圆弧型小路.该市拟修建一条从
通往海岸的观光专线
,其中
为
上异于
的一点,
与
平行,设
.
![]()
(1)证明:观光专线
的总长度随
的增大而减小;
(2)已知新建道路
的单位成本是翻新道路
的单位成本的2倍.当
取何值时,观光专线
的修建总成本最低?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com