【题目】已知椭圆C:
(
)的焦距为
,且右焦点F与短轴的两个端点组成一个正三角形.若直线l与椭圆C交于
、
,且在椭圆C上存在点M,使得:
(其中O为坐标原点),则称直线l具有性质H.
(1)求椭圆C的方程;
(2)若直线l垂直于x轴,且具有性质H,求直线l的方程;
(3)求证:在椭圆C上不存在三个不同的点P、Q、R,使得直线
、
、
都具有性质H.
【答案】(1)
(2)
;(3)证明见解析;
【解析】
(1)根据正三角形中的长度关系列出
的关系求解即可.
(2) 设直线
,再求得
满足的关系式,进而代入
化简求解即可.
(3)假设存在椭圆C上不存在三个不同的点P、Q、R满足条件,再将对应的点坐标代入椭圆方程,分情况讨论得出矛盾即可.
(1)
,所以
,
又右焦点F与短轴的两个端点组成一个正三角形,所以,![]()
因为
,
解得:
,
,
所以,椭圆方程为:![]()
(2)设直线
,则
,
其中
满足:
,
,
设
,
∵
(其中O为坐标原点),
∴
,
∵点
在椭圆
上,
∴
,
∴
,
∴
,
∴直线
的方程为
或
.
(3) 证明:假设在椭圆
上存在三个不同的点
,
使得直线
都具有性质
,
∵直线
具有性质
,
∴在椭圆
上存在点M,使得:
,
设
,则
,
,
∵点
在椭圆上,∴
,
又∵
,
,代入化简得
,①
同理:
②,
,③
1)若
中至少一个为0,不妨设
,则
,
由①③得
,即
为长轴的两个端点,则②不成立,矛盾。
2)若
均不为0,则由①②③得
,矛盾。
∵在椭圆C上不存在三个不同的点P、Q、R,使得直线
、
、
都具有性质H.
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,直线
的参数方程为
(t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为
.
(1)求圆C的直角坐标方程及直线
的斜率;
(2)直线
与圆C交于M,N两点,
中点为Q,求Q点轨迹的直角坐标方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给定数列
,记该数列前
项
中的最大项为
,即
,该数列后
项
中的最小项为
,记
,
;
(1)对于数列:3,4,7,1,求出相应的
,
,
;
(2)若
是数列
的前
项和,且对任意
,有
,其中
为实数,
且
,
.
(ⅰ)设
,证明:数列
是等比数列;
(ⅱ)若数列
对应的
满足
对任意的正整数
恒成立,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(数学文卷·2017届重庆十一中高三12月月考第16题) 现介绍祖暅原理求球体体积公式的做法:可构造一个底面半径和高都与球半径相等的圆柱,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,用这样一个几何体与半球应用祖暅原理(图1),即可求得球的体积公式.请研究和理解球的体积公式求法的基础上,解答以下问题:已知椭圆的标准方程为
,将此椭圆绕y轴旋转一周后,得一橄榄状的几何体(图2),其体积等于______.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左焦点为
,经过点
的直线与椭圆相交于
,
两点,点
为线段
的中点,点
为坐标原点.当直线
的斜率为
时,直线
的斜率为
.
(1)求椭圆
的标准方程;
(2)若点
为椭圆的左顶点,点
为椭圆的右顶点,过
的动直线交该椭圆于
,
两点,记
的面积为
,
的面积为
,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于函数![]()
,有下列四个命题:①
的值域是
;②
是奇函数;③
在
上单调递增;④方程
总有四个不同的解;其中正确的是( )
A.①②B.②③C.②④D.③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列
的各项均为整数,其前n项和为
.规定:若数列
满足前r项依次成公差为1的等差数列,从第
项起往后依次成公比为2的等比数列,则称数列
为“r关联数列”.
(1)若数列
为“6关联数列”,求数列
的通项公式;
(2)在(1)的条件下,求出
,并证明:对任意
,
;
(3)若数列
为“6关联数列”,当
时,在
与
之间插入n个数,使这
个数组成一个公差为
的等差数列,求
,并探究在数列
中是否存在三项
,
,
其中m,k,p成等差数列)成等比数列?若存在,求出这样的三项;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
(a>b>0)的左、右焦点分别为F1,F2,且离心率为
,M为椭圆上任意一点,当∠F1MF2=90°时,△F1MF2的面积为1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知点A是椭圆C上异于椭圆顶点的一点,延长直线AF1,AF2分别与椭圆交于点B,D,设直线BD的斜率为k1,直线OA的斜率为k2,求证:k1·k2等于定值.
【答案】(Ⅰ)
(Ⅱ)见解析
【解析】
(Ⅰ)由题意可求得
,则
,椭圆
的方程为
.
(Ⅱ)设
,
,
当直线
的斜率不存在或直线
的斜率不存在时,
.
当直线
、
的斜率存在时,
,设直线
的方程为
,联立直线方程与椭圆方程,结合韦达定理计算可得直线
的斜率为
,直线
的斜率为
,则
.综上可得:直线
与
的斜率之积为定值
.
(Ⅰ)设
由题
,
解得
,则
,
椭圆
的方程为
.
(Ⅱ)设
,
,当直线
的斜率不存在时,
设
,则
,直线
的方程为
代入
,
可得
,
,则
,
直线
的斜率为
,直线
的斜率为
,
,
当直线
的斜率不存在时,同理可得
.
当直线
、
的斜率存在时,
设直线
的方程为
,
则由
消去
可得:
,
又
,则
,代入上述方程可得:
,
,
则
,
设直线
的方程为
,同理可得
,
直线
的斜率为![]()
直线
的斜率为
,
.
所以,直线
与
的斜率之积为定值
,即
.
【点睛】
(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x(或y)建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.
(2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.
【题型】解答题
【结束】
21
【题目】已知函数f(x)=(x+b)(
-a),(b>0),在(-1,f(-1))处的切线方程为(e-1)x+ey+e-1=0.
(Ⅰ)求a,b;
(Ⅱ)若方程f(x)=m有两个实数根x1,x2,且x1<x2,证明:x2-x1≤1+
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com