精英家教网 > 高中数学 > 题目详情
19.设数列{an}的前n项和为Sn,且{${\frac{S_n}{n}}\right.$}是等差数列,已知a1=1,$\frac{S_2}{2}$+$\frac{S_3}{3}$+$\frac{S_4}{4}$=6.
(1)求数列{an}的通项公式;
(2)若数列bn=$\frac{{{a_{n+1}}}}{{{a_{n+2}}}}$+$\frac{{{a_{n+2}}}}{{{a_{n+1}}}}$-2,数列{bn}的前n项和为Tn,求证:Tn<$\frac{1}{2}$.

分析 (1)利用等差数列的通项公式与求和公式即可得出.
(2)由(1)知${b_n}=\frac{n+1}{n+2}+\frac{n+2}{n+1}-2=\frac{1}{n+1}-\frac{1}{n+2}$,利用“裂项求和”即可得出.

解答 解:(1)由题意可得 $3×\frac{S_1}{1}+6d=6,{S_1}={a_1}=1$,
∴$d=\frac{1}{2}$,∴$\frac{S_n}{n}=1+\frac{n-1}{2}=\frac{n+1}{2}$,
∴${S_n}=\frac{{n({n+1})}}{2}$,
∴当n≥2时,an=Sn-Sn-1=n,当n=1时也成立,
∴an=n.
(2)由(1)知${b_n}=\frac{n+1}{n+2}+\frac{n+2}{n+1}-2=\frac{1}{n+1}-\frac{1}{n+2}$,
∴${T_n}={b_1}+{b_2}+…+{b_n}=({\frac{1}{2}-\frac{1}{3}})+({\frac{1}{3}-\frac{1}{4}})+({\frac{1}{n+1}-\frac{1}{n+2}})=\frac{1}{2}-\frac{1}{n+2}$,
∵$\frac{1}{n+2}>0$,∴${T_n}=\frac{1}{2}-\frac{1}{n+2}<\frac{1}{2}$.

点评 本题考查了“裂项求和方法”、等差数列的通项公式与求和公式、数列的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=xlnx-$\frac{a}{2}$x2-x+a(a∈R)在其定义域内有两个不同的极值点.
(1)求a的取值范围;
(2)记两个极值点分别为x1,x2,且x1<x2,已知λ>0,若不等式e1+λ<x1•x2λ恒成立,求λ的范围.
(3)证明:$\frac{ln2}{3}$+$\frac{ln3}{4}$+$\frac{ln4}{5}$+…+$\frac{lnn}{{n}^{2}-1}$+(1+$\frac{1}{n}$)n<$\frac{{n}^{2}+n+10}{4}$(n∈N*,n≥2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数f(x)=loga(3-ax)在区间(2,6)上递增,则实数a的取值范围是$0<a≤\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=sin(2x+$\frac{π}{3}$)+sin(2x-$\frac{π}{3}$)+2cos2x+a-1(a为常数),若函数f(x)的最大值为$\sqrt{2}$+1.
(1)求实数a的值;
(2)求函数f(x)所有对称中心的坐标;
(3)求函数g(x)=f(x+$\frac{3}{8}$π)+2减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)、g(x)分别是定义在实数集上的奇函数、偶函数,且f(x)+g(x)=x2+ax+2a-1(a为常数),若f(1)=2,则g(t)=t2+4t-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列关系中,表示正确的是(  )
A.1⊆{0,1,2}B.{1,2}∈{0,1,2}C.2∈{0,1,2}D.∅={0}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.命题“如果a2+2ab+b2+a+b-2≠0,那么a+b≠1”的逆命题、否命题、逆否命题这三个命题中,真命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图(1),等腰直角三角形ABC的底边AB=4,点D在线段AC上(不含C点),DE⊥AB于E,现将△ADE沿DE折起到△PDE的位置(如图(2)).
(1)求证:PB⊥DE;
(2)若PE⊥BE,AE=1,
①试在线段BP上找一点M,使得CM∥平面PDE,求BM的长;
②求二面角D-PC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在等差数列{an}中,已知a3+a8>0,且S9<0,则S1、S2、…S9中最小的是(  )
A.S4B.S5C.S6D.S7

查看答案和解析>>

同步练习册答案