分析 (1)利用等差数列的通项公式与求和公式即可得出.
(2)由(1)知${b_n}=\frac{n+1}{n+2}+\frac{n+2}{n+1}-2=\frac{1}{n+1}-\frac{1}{n+2}$,利用“裂项求和”即可得出.
解答 解:(1)由题意可得 $3×\frac{S_1}{1}+6d=6,{S_1}={a_1}=1$,
∴$d=\frac{1}{2}$,∴$\frac{S_n}{n}=1+\frac{n-1}{2}=\frac{n+1}{2}$,
∴${S_n}=\frac{{n({n+1})}}{2}$,
∴当n≥2时,an=Sn-Sn-1=n,当n=1时也成立,
∴an=n.
(2)由(1)知${b_n}=\frac{n+1}{n+2}+\frac{n+2}{n+1}-2=\frac{1}{n+1}-\frac{1}{n+2}$,
∴${T_n}={b_1}+{b_2}+…+{b_n}=({\frac{1}{2}-\frac{1}{3}})+({\frac{1}{3}-\frac{1}{4}})+({\frac{1}{n+1}-\frac{1}{n+2}})=\frac{1}{2}-\frac{1}{n+2}$,
∵$\frac{1}{n+2}>0$,∴${T_n}=\frac{1}{2}-\frac{1}{n+2}<\frac{1}{2}$.
点评 本题考查了“裂项求和方法”、等差数列的通项公式与求和公式、数列的单调性,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com