精英家教网 > 高中数学 > 题目详情
1.如果椭圆$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{9}$=1的弦被点(4,2)平分,则这条弦所在的直线方程是x+2y-8=0.

分析 若设弦的端点为M(x1,y1)、N(x2,y2),代入椭圆方程得9x12+36y12=36×9①,9x22+36y22=36×9②;作差①-②,并由中点坐标公式,可得直线斜率k,从而求出弦所在的直线方程.

解答 解:设弦的端点为M(x1,y1)、N(x2,y2),
代入椭圆方程$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{9}$=1,得
9x12+36y12=36×9①,9x22+36y22=36×9②;
①-②,得9(x1+x2)(x1-x2)+36(y1+y2)(y1-y2)=0;
由中点坐标$\frac{{x}_{1}+{x}_{2}}{2}$=4,$\frac{{y}_{1}+{y}_{2}}{2}$=2,代入上式,得
36(x1-x2)+72(y1-y2)=0,
∴直线斜率为k=$\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}$=-$\frac{1}{2}$,
所求弦的直线方程为:y-2=-$\frac{1}{2}$(x-4),
即x+2y-8=0.
故答案为:x+2y-8=0.

点评 本题考查了圆锥曲线的中点坐标公式,通过作差的方法,求得直线斜率k的应用模型,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知实数x,y满足$\left\{\begin{array}{l}x+3y-3≤0\\ x-y+1≥0\\ y≥-1\end{array}\right.$,则点P(x,y)构成的区域的面积为8,2x+y的最大值为11,其对应的最优解为(6,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知sinA-sinB=$\frac{1}{3}$sinC,3b=2a,2≤a2+ac≤18,设△ABC的面积为S,p=$\sqrt{2}$a-S,则p的最小值是(  )
A.$\frac{5\sqrt{2}}{9}$B.$\frac{7\sqrt{2}}{9}$C.$\sqrt{2}$D.$\frac{9\sqrt{2}}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设f(x)是定义在R上恒不为零的函数,对任意x,y∈R,都有f(x)•f(y)=f(x+y),若a1=$\frac{1}{2}$,an=f(n)(n∈N*),则数列{an}的前n项和Sn=1-${(\frac{1}{2})}^{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=x${\;}^{-\frac{1}{2}}$-log3x,若x0是函数y=f(x)的零点,且0<x1<x0,则f(x1)(  )
A.恒为正值B.等于0C.恒为负值D.不大于0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列符号语言表述正确的是(  )
A.A∈lB.A?αC.A?lD.l∈α

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x2-kx+1,若存在α∈(0,$\frac{π}{2}$),使f(sinα)=f(cosα)
(1)当k=$\frac{1}{5}$时,求tanα的值
(2)在(1)的成立的基础上,求$\frac{{2{{sin}^2}α-2sinα•cosα}}{1+tanα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.曲线$\frac{x^2}{25}+\frac{y^2}{5}$=1与曲线$\frac{x^2}{n}+\frac{y^2}{5n}$=1(n>0)有相同的(  )
A.焦点B.焦距C.离心率D.准线

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的离心率为2,它的一个焦点与抛物线y2=8x的焦点相同,那么双曲线的渐近线方程为$y=±\sqrt{3}x$.

查看答案和解析>>

同步练习册答案