分析 由题意可得$\overrightarrow{a}•\overrightarrow{b}$=-3x+12>0,且$\frac{x}{-3}$≠$\frac{2}{6}$,从而求得x的范围.
解答 解:若$\overrightarrow{a}$=(x,2),$\overrightarrow{b}$=(-3,6),且$\overrightarrow{a}$与$\overrightarrow{b}$的夹角是锐角,则$\overrightarrow{a}•\overrightarrow{b}$=-3x+12>0,且$\frac{x}{-3}$≠$\frac{2}{6}$,
求得x<4,且x≠-1,
故答案为:{x|x<4,且x≠-1 }.
点评 本题主要考查两个向量的数量积的运算,注意隐藏条件:两个向量不共线,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com