精英家教网 > 高中数学 > 题目详情
10.已知$\frac{cosα+sinα}{cosα-sinα}=\frac{3}{5}$,则cos2α-sin2α=$\frac{15}{17}$.

分析 利用本题主要考查同角三角函数的基本关系求得 tanα的值,可得cos2α-sin2α=$\frac{1{-tan}^{2}α}{1{+tan}^{2}α}$ 的值.

解答 解:∵$\frac{cosα+sinα}{cosα-sinα}=\frac{3}{5}$=$\frac{1+tanα}{1-tanα}$,∴tanα=-$\frac{1}{4}$,则cos2α-sin2α=$\frac{{cos}^{2}α{-sin}^{2}α}{{cos}^{2}α{+sin}^{2}α}$=$\frac{1{-tan}^{2}α}{1{+tan}^{2}α}$=$\frac{15}{17}$,
故答案为:$\frac{15}{17}$.

点评 本题主要考查同角三角函数的基本关系的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知平面向量$\overrightarrow{OA}$、$\overrightarrow{OB}$、$\overrightarrow{OC}$满足:|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=|$\overrightarrow{OC}$|=1,$\overrightarrow{OA}$•$\overrightarrow{OB}$=0.若$\overrightarrow{OC}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,(x,y∈R),则x+y的最大值是(  )
A.$\frac{{\sqrt{2}}}{2}$B.1C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图是一几何体的直观图、主视图、俯视图、左视图.

(1)若F为PD的中点,求证:AF⊥面PCD;
(2)证明:BD∥面PEC;
(3)求该几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,圆O与直线x+$\sqrt{3}$y+2=0相切于点P,与x正半轴交于点A,与直线y=$\sqrt{3}$x在第一象限的交点为B.点C为圆O上任一点,且满足$\overrightarrow{OC}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,以x,y为坐标的动点D(x,y)的轨迹记为曲线Γ.
(1)求圆O的方程及曲线Γ的方程;
(2)若两条直线l1:y=kx和l2:y=-$\frac{1}{k}$x分别交曲线Γ于点E、F和M、N,求四边形EMFN面积的最大值,并求此时的k的值.
(3)已知曲线Γ的轨迹为椭圆,研究曲线Γ的对称性,并求椭圆Γ的焦点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.给出如下列联表
患心脏病患其它病合  计
高血压201030
不高血压305080
合  计5060110
由以上数据判断高血压与患心脏病之间在多大程度上有关系?(  )
(参考数据:P(K2≥6.635)=0.010,P(K2≥7.879)=0.005)
A.0.5%B.1%C.99.5%D.99%

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若$\overrightarrow{a}$=(x,2),$\overrightarrow{b}$=(-3,6),且$\overrightarrow{a}$与$\overrightarrow{b}$的夹角是锐角,则实数x的取值范围是{x|x<4,且x≠-1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知△ABC的面积为1,$\overrightarrow{AB}•\overrightarrow{BC}=2\sqrt{3}$,则角B的大小为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某市去年高考考生成绩服从正态分布N(500,502),现有25000名考生,试确定考生成绩在550~600分的人数.参考数据:(p(μ-σ<X≤μ+σ)=0.6826  p(μ-2σ<X≤μ+2σ)=0.9544  p(μ-3σ<X≤μ+3σ)=0.9974)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.定义在R上的函数f(x)=e2x-2x+x2,g(x)=f($\frac{x}{2}$)-$\frac{1}{4}$x2+(1-a)x+a.
(1)求函数g(x)的最大值;
(2)如果s、t、r满足|s-r|≤|t-r|,那么称s比t更靠近r.当a≥2且x≥1时,试比较$\frac{e}{x}$和ex-1+a哪个更靠近lnx,并说明理由.

查看答案和解析>>

同步练习册答案