精英家教网 > 高中数学 > 题目详情
19.某市去年高考考生成绩服从正态分布N(500,502),现有25000名考生,试确定考生成绩在550~600分的人数.参考数据:(p(μ-σ<X≤μ+σ)=0.6826  p(μ-2σ<X≤μ+2σ)=0.9544  p(μ-3σ<X≤μ+3σ)=0.9974)

分析 高考考生成绩服从正态分布N(500,502),μ=500,σ=50,成绩在550~600分之间的概率是$\frac{1}{2}$(0.9544-0.6826),由此得到要求的结果.

解答 解:根据题意,高考考生成绩服从正态分布N(500,502),
∴μ=500,σ=50,
∴考生成绩在550~600分的人数约为$\frac{1}{2}$(0.9544-0.6826)×25000≈3397.

点评 一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似的服从正态分布,正态分布在概率和统计中具有重要地位且满足3σ原则.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.设函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x>0}\\{{4}^{x},x≤0}\end{array}\right.$ 若函数g(x)=f(x)-k存在两个零点,则实数k的取值范围是(0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知$\frac{cosα+sinα}{cosα-sinα}=\frac{3}{5}$,则cos2α-sin2α=$\frac{15}{17}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知数列{an}的前n项和${S_n}={n^2}+3n$,则an=2n+2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.由代数式的乘法法则类比推导向量的数量积的运算法则:
①“mn=nm”类比得到“$\overrightarrow{a}$•$\overrightarrow{b}$=$\overrightarrow{b}$•$\overrightarrow{a}$”;
②“(m•n)t=m(n•t)”类比得到“($\overrightarrow{a}$•$\overrightarrow{b}$)•$\overrightarrow{c}$=$\overrightarrow{a}$•($\overrightarrow{b}$•$\overrightarrow{c}$)”;
③“(m+n)t=mt+nt”类比得到“($\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{c}$=$\overrightarrow{a}$•$\overrightarrow{c}$+$\overrightarrow{b}$•$\overrightarrow{c}$”;
④“t≠0,mt=xt⇒m=x”类比得到“$\overrightarrow{p}$≠0,$\overrightarrow{a}$•$\overrightarrow{p}$=$\overrightarrow{x}$•$\overrightarrow{p}$⇒$\overrightarrow{a}$=$\overrightarrow{x}$”;
⑤“|m•n|=|m|•|n|”类比得到“|$\overrightarrow{a}$•$\overrightarrow{b}$|=|$\overrightarrow{a}$|•|$\overrightarrow{b}$|”;
⑥“$\frac{ac}{bc}$=$\frac{a}{b}$”类比得到“$\frac{\overrightarrow{a}•\overrightarrow{c}}{\overrightarrow{b}•\overrightarrow{c}}$=$\frac{\overrightarrow{a}}{\overrightarrow{b}}$”.
以上式子中,类比得到的结论正确的命题序号为①③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.把1、2、3、4、5这五个数字组成无重复数字的五位数,并把它们按由小到大的顺序排列成一个数列.
(1)43251是这个数列的第几项?
(2)求所有五位数的各位上的数字之和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{1}{2}$ax2-(2a+1)x+21nx.
(1)求函数f(x)的单调递减区间;
(2)若对任意的a∈(-3,-2),x1,x2∈[2,4],恒有(m+2)a一2ln2>|f(x1)-f(x2)|成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.坐标平面内与两个定点F1(1,0),F2(-1,0)的距离的和等于2的动点的轨迹是(  )
A.椭圆B.C.线段D.双曲线

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知奇函数f(x)=ax3+bx2+cx+d,(a,b,c,d∈R),满足f(1)=1,若对任意的x∈[-1,1],都有|f(x)|≤1成立,则实数a的取值范围是[-$\frac{1}{2}$,4].

查看答案和解析>>

同步练习册答案