| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
分析 由条件利用两个向量的数量积的定义,求得tanB的值,可得B的值.
解答 解:∵△ABC的面积为$\frac{1}{2}$•AB•BC•sinB=1,∴AB•BC=$\frac{2}{sinB}$.
又 $\overrightarrow{AB}•\overrightarrow{BC}=2\sqrt{3}$=AB•BC•cos(π-B)=-AB•BC•cosB=-$\frac{2}{sinB}$•cosB=-2cotB,
∴cotB=-$\sqrt{3}$=$\frac{1}{tanB}$,tanB=-$\frac{\sqrt{3}}{3}$=tan(π-$\frac{π}{6}$),∴B=$\frac{5π}{6}$,
故选:D.
点评 本题主要考查两个向量的数量积的定义,三角形的面积公式,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | -1 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 与a,b均相交 | B. | 与a,b都不相交 | ||
| C. | 至少与a,b中的一条相交 | D. | 至多与a,b中的一条相交 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com