精英家教网 > 高中数学 > 题目详情
12.a,b是两条异面直线,a?平面α,b?平面β,若α∩β=c,则直线c必定(  )
A.与a,b均相交B.与a,b都不相交
C.至少与a,b中的一条相交D.至多与a,b中的一条相交

分析 a,b是两条异面直线,a?平面α,b?平面β,α∩β=c,放到正方体当中去观察.c是交线,a?平面α,b?平面β,可能出现c与a,b均相交.c与a,b其中一条相交,即可得到答案.

解答 解:由题意:a,b是两条异面直线,a?平面α,b?平面β,α∩β=c,
那么:c是交线,可能出现c与a,b均相交.c与a,b其中一条相交,如果c与a,b其中一条平行,那么必与另条也相交.故满足题意的选项只有C.
故选:C.

点评 本题考查了两个平面的交线与在平面的直线的关系,放到正方体当中去观察.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知△ABC的面积为1,$\overrightarrow{AB}•\overrightarrow{BC}=2\sqrt{3}$,则角B的大小为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如表为一组等式,某学生根据表猜想S2n-1=(2n-1)(an2+bn+c),老师回答正确,则a-b+c=5.
S1=1,
S2=2+3=5,
S3=4+5+6=15,
S4=7+8+9+10=34,
S5=11+12+13+14+15=65,

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.定义在R上的函数f(x)=e2x-2x+x2,g(x)=f($\frac{x}{2}$)-$\frac{1}{4}$x2+(1-a)x+a.
(1)求函数g(x)的最大值;
(2)如果s、t、r满足|s-r|≤|t-r|,那么称s比t更靠近r.当a≥2且x≥1时,试比较$\frac{e}{x}$和ex-1+a哪个更靠近lnx,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设a∈($\frac{2}{3}$,1),f(x)=x3-$\frac{3}{2}$ax2+b,x∈[-1,1]的最大值为1,最小值为-$\frac{\sqrt{6}}{2}$,求f(x)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知数据x1,x2,x3,…,x200是上海市普通职工的2016年的年收入,设这200个数据的平均数为x,中位数为y,方差为z,如果再加上中国首富马云的年收入x201则这201个数据中,下列说法正确的是(  )
A.x大大增大,y一定变大,z可能不变B.x可能不变,y可能不变,z可能不变
C.x大大增大,y可能不变,z也不变D.x大大增大,y可能不变,z变大

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.根据微信同程旅游的调查统计显示,参与网上购票的1000位购票者的年龄(单位:岁)情况如图所示.
(1)已知中间三个年龄段的网上购票人数成等差数列,求a,b的值;
(2)为鼓励大家网上购票,该平台常采用购票就发放酒店入住代金券的方法进行促销,具体做法如下:年龄在[30,50)岁的每人发放20元,其余年龄段的每人发放50元,先按发放代金券的金额采用分层抽样的方式从参与调查的1000位网上购票者中抽取5人,并在这55人中随机抽取3人进行回访调查,求此3人获得代金券的金额总和为90元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{a}{x}$-xlnx(a∈R),g(x)=2x3-3x2
(1)若m为正实数,求函数y=g(x),x∈[$\frac{1}{m}$,m]上的最大值和最小值;
(2)若对任意的实数s,t∈[$\frac{1}{2}$,2],都有f(s)≤g(t),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2.将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D-ABC,如图2所示.
(Ⅰ)  求证:BC⊥平面ACD;
(Ⅱ)求几何体A-BCD的体积.

查看答案和解析>>

同步练习册答案