精英家教网 > 高中数学 > 题目详情
2.如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2.将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D-ABC,如图2所示.
(Ⅰ)  求证:BC⊥平面ACD;
(Ⅱ)求几何体A-BCD的体积.

分析 (Ⅰ)由题中数量关系和勾股定理,得出AC⊥BC,再证BC垂直与平面ACD中的一条直线即可,△ADC是等腰Rt△,底边上的中线OD垂直底边,由面面垂直的性质得OD⊥平面ABC,即OD⊥BC,从而证得BC⊥平面ACD;
(Ⅱ)由高和底面积,求得三棱锥B-ACD的体积即是几何体A-BCD的体积.

解答 (Ⅰ)证明:∵在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2.
∴AC=$\sqrt{{2}^{2}+{2}^{2}}$=2$\sqrt{2}$,BC=$\sqrt{{2}^{2}+(4-2)^{2}}$=2$\sqrt{2}$,
∴AC2+BC2=16=AB2
∴AC⊥BC,
取AC的中点O,连结DO,则DO⊥AC,
又面ADC⊥面ABC,面ADC∩面ABC=AC,DO?面ACD,
从而OD⊥平面ABC,
∵BC?面ABC,
∴OD⊥BC,
又AC⊥BC,AC∩OD=O,
∴BC⊥平面ACD;
(Ⅱ)解:由(Ⅰ)可知BC为三棱锥B-ACD的高,
BC=2$\sqrt{2}$,S△ACD=2,
∴VA-BCD=VB-ACD=$\frac{1}{3}$sh=$\frac{1}{3}$×2×2$\sqrt{2}$=$\frac{4\sqrt{2}}{3}$.

点评 本题考查了线面垂直的判定定理及勾股定理,注意等体积法的合理运用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.a,b是两条异面直线,a?平面α,b?平面β,若α∩β=c,则直线c必定(  )
A.与a,b均相交B.与a,b都不相交
C.至少与a,b中的一条相交D.至多与a,b中的一条相交

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在边长为1的菱形ABCD中,∠BAD=30°,E是BC的中点,则$\overrightarrow{AC}$•$\overrightarrow{AE}$ (  )
A.$\frac{6+3\sqrt{3}}{4}$B.$\frac{3+\sqrt{3}}{3}$C.$\frac{5}{4}$D.$\frac{9}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知复数z=$\frac{3}{1+i}$,则|z|为(  )
A.$\frac{3}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{3\sqrt{2}}{2}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx-y-m+3=0交于点P(x,y),则|$\overrightarrow{PA}$|•|$\overrightarrow{PB}$|的最大值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.某校高一年级课题研究,其中对超市盈利研究的有200人,对有关测量研究的有150人,对学习方法研究的有300人,研究其他课程的有50人,利用分层抽样的方法从研究这四个课题的学生中选取14人参加全校的研究性学习培训,则应该从对学习方法研究的学生中选取的人数为:6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在同一平面直角坐标系中,将直线x+y+2=0变成直线8x+y+8=0,写出满足条件的伸缩变换公式$\left\{\begin{array}{l}{x′=\frac{1}{2}x}\\{y′=4y}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在△ABC中,a,b,c分别是三个内角A,B,C的对边,若$a=\sqrt{3}$,b=1,A=2B,则边长c=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=|mx-2|-|mx+1|(m∈R).
(1)当m=1时,解不等式f(x)≤1;
(2)若对任意实数m,f(x)的最大值恒为n,求证:对任意正数a,b,c,当a+b+c=n时,$\sqrt{a}$+$\sqrt{b}$+$\sqrt{c}$≤n.

查看答案和解析>>

同步练习册答案